用于盲图像质量评估的多模态密集卷积网络

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2023-12-07 DOI:10.1631/fitee.2200534
Nandhini Chockalingam, Brindha Murugan
{"title":"用于盲图像质量评估的多模态密集卷积网络","authors":"Nandhini Chockalingam, Brindha Murugan","doi":"10.1631/fitee.2200534","DOIUrl":null,"url":null,"abstract":"<p>Technological advancements continue to expand the communications industry’s potential. Images, which are an important component in strengthening communication, are widely available. Therefore, image quality assessment (IQA) is critical in improving content delivered to end users. Convolutional neural networks (CNNs) used in IQA face two common challenges. One issue is that these methods fail to provide the best representation of the image. The other issue is that the models have a large number of parameters, which easily leads to overfitting. To address these issues, the dense convolution network (DSC-Net), a deep learning model with fewer parameters, is proposed for no-reference image quality assessment (NR-IQA). Moreover, it is obvious that the use of multimodal data for deep learning has improved the performance of applications. As a result, multimodal dense convolution network (MDSC-Net) fuses the texture features extracted using the gray-level co-occurrence matrix (GLCM) method and spatial features extracted using DSC-Net and predicts the image quality. The performance of the proposed framework on the benchmark synthetic datasets LIVE, TID2013, and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multimodal dense convolution network for blind image quality assessment\",\"authors\":\"Nandhini Chockalingam, Brindha Murugan\",\"doi\":\"10.1631/fitee.2200534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Technological advancements continue to expand the communications industry’s potential. Images, which are an important component in strengthening communication, are widely available. Therefore, image quality assessment (IQA) is critical in improving content delivered to end users. Convolutional neural networks (CNNs) used in IQA face two common challenges. One issue is that these methods fail to provide the best representation of the image. The other issue is that the models have a large number of parameters, which easily leads to overfitting. To address these issues, the dense convolution network (DSC-Net), a deep learning model with fewer parameters, is proposed for no-reference image quality assessment (NR-IQA). Moreover, it is obvious that the use of multimodal data for deep learning has improved the performance of applications. As a result, multimodal dense convolution network (MDSC-Net) fuses the texture features extracted using the gray-level co-occurrence matrix (GLCM) method and spatial features extracted using DSC-Net and predicts the image quality. The performance of the proposed framework on the benchmark synthetic datasets LIVE, TID2013, and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2200534\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2200534","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

技术进步不断拓展通信业的潜力。图像是加强通信的重要组成部分,可广泛获取。因此,图像质量评估(IQA)对于改善提供给最终用户的内容至关重要。用于 IQA 的卷积神经网络(CNN)面临两个共同的挑战。一个问题是这些方法无法提供图像的最佳表示。另一个问题是,这些模型有大量参数,很容易导致过度拟合。为了解决这些问题,我们提出了参数较少的深度学习模型--密集卷积网络(DSC-Net),用于无参考图像质量评估(NR-IQA)。此外,使用多模态数据进行深度学习显然提高了应用性能。因此,多模态密集卷积网络(MDSC-Net)融合了利用灰度共现矩阵(GLCM)方法提取的纹理特征和利用 DSC-Net 提取的空间特征,并预测了图像质量。拟议框架在基准合成数据集 LIVE、TID2013 和 KADID-10k 上的表现表明,在 NR-IQA 任务中,MDSC-Net 方法比最先进的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multimodal dense convolution network for blind image quality assessment

Technological advancements continue to expand the communications industry’s potential. Images, which are an important component in strengthening communication, are widely available. Therefore, image quality assessment (IQA) is critical in improving content delivered to end users. Convolutional neural networks (CNNs) used in IQA face two common challenges. One issue is that these methods fail to provide the best representation of the image. The other issue is that the models have a large number of parameters, which easily leads to overfitting. To address these issues, the dense convolution network (DSC-Net), a deep learning model with fewer parameters, is proposed for no-reference image quality assessment (NR-IQA). Moreover, it is obvious that the use of multimodal data for deep learning has improved the performance of applications. As a result, multimodal dense convolution network (MDSC-Net) fuses the texture features extracted using the gray-level co-occurrence matrix (GLCM) method and spatial features extracted using DSC-Net and predicts the image quality. The performance of the proposed framework on the benchmark synthetic datasets LIVE, TID2013, and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1