基于波导的增强现实显示器:前景与挑战

IF 27.2 Q1 OPTICS eLight Pub Date : 2023-12-07 DOI:10.1186/s43593-023-00057-z
Yuqian Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin-Tson Wu
{"title":"基于波导的增强现实显示器:前景与挑战","authors":"Yuqian Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin-Tson Wu","doi":"10.1186/s43593-023-00057-z","DOIUrl":null,"url":null,"abstract":"Augmented reality (AR) displays, as the next generation platform for spatial computing and digital twins, enable users to view digital images superimposed on real-world environment, fostering a deeper level of human-digital interactions. However, as a critical element in an AR system, optical combiners face unprecedented challenges to match the exceptional performance requirements of human vision system while keeping the headset ultracompact and lightweight. After decades of extensive device and material research efforts, and heavy investment in manufacturing technologies, several promising waveguide combiners have been developed. In this review paper, we focus on the perspectives and challenges of optical waveguide combiners for AR displays. We will begin by introducing the basic device structures and operation principles of different AR architectures, and then delve into different waveguide combiners, including geometric and diffractive waveguide combiners. Some commonly used in-couplers and out-couplers, such as prisms, mirrors, surface relief gratings, volume holographic gratings, polarization volume gratings, and metasurface-based couplers, will be discussed, and their properties analyzed in detail. Additionally, we will explore recent advances in waveguide combiner design and modeling, such as exit pupil expansion, wide field of view, geometric architectures of waveguide couplers, full-color propagation, and brightness and color uniformity optimization. Finally, we will discuss the bottlenecks and future development trends in waveguide combiner technologies. The objective of this review is to provide a comprehensive overview of the current state of waveguide combiner technologies, analyze their pros and cons, and then present the future challenges of AR displays.","PeriodicalId":72891,"journal":{"name":"eLight","volume":"108 1","pages":""},"PeriodicalIF":27.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waveguide-based augmented reality displays: perspectives and challenges\",\"authors\":\"Yuqian Ding, Qian Yang, Yannanqi Li, Zhiyong Yang, Zhengyang Wang, Haowen Liang, Shin-Tson Wu\",\"doi\":\"10.1186/s43593-023-00057-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented reality (AR) displays, as the next generation platform for spatial computing and digital twins, enable users to view digital images superimposed on real-world environment, fostering a deeper level of human-digital interactions. However, as a critical element in an AR system, optical combiners face unprecedented challenges to match the exceptional performance requirements of human vision system while keeping the headset ultracompact and lightweight. After decades of extensive device and material research efforts, and heavy investment in manufacturing technologies, several promising waveguide combiners have been developed. In this review paper, we focus on the perspectives and challenges of optical waveguide combiners for AR displays. We will begin by introducing the basic device structures and operation principles of different AR architectures, and then delve into different waveguide combiners, including geometric and diffractive waveguide combiners. Some commonly used in-couplers and out-couplers, such as prisms, mirrors, surface relief gratings, volume holographic gratings, polarization volume gratings, and metasurface-based couplers, will be discussed, and their properties analyzed in detail. Additionally, we will explore recent advances in waveguide combiner design and modeling, such as exit pupil expansion, wide field of view, geometric architectures of waveguide couplers, full-color propagation, and brightness and color uniformity optimization. Finally, we will discuss the bottlenecks and future development trends in waveguide combiner technologies. The objective of this review is to provide a comprehensive overview of the current state of waveguide combiner technologies, analyze their pros and cons, and then present the future challenges of AR displays.\",\"PeriodicalId\":72891,\"journal\":{\"name\":\"eLight\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":27.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLight\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43593-023-00057-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLight","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43593-023-00057-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

增强现实(AR)显示器作为空间计算和数字孪生的下一代平台,使用户能够观看叠加在现实世界环境中的数字图像,从而促进更深层次的人机交互。然而,作为 AR 系统的关键元件,光学合路器面临着前所未有的挑战,既要满足人类视觉系统的特殊性能要求,又要保持耳机的超小型和轻量化。经过数十年对器件和材料的广泛研究,以及对制造技术的大量投资,已经开发出了几种前景看好的波导合路器。在这篇综述论文中,我们将重点讨论用于 AR 显示器的光波导合路器的前景和挑战。我们将首先介绍不同 AR 架构的基本器件结构和工作原理,然后深入探讨不同的波导合路器,包括几何波导合路器和衍射波导合路器。我们将讨论一些常用的内耦合器和外耦合器,如棱镜、反射镜、表面浮雕光栅、体全息光栅、偏振体光栅和基于元表面的耦合器,并详细分析它们的特性。此外,我们还将探讨波导组合器设计和建模的最新进展,如出口瞳孔扩大、宽视场、波导耦合器的几何结构、全彩传播以及亮度和色彩均匀性优化。最后,我们将讨论波导合路器技术的瓶颈和未来发展趋势。本综述旨在全面概述波导合路器技术的现状,分析其优缺点,然后提出 AR 显示屏未来面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Waveguide-based augmented reality displays: perspectives and challenges
Augmented reality (AR) displays, as the next generation platform for spatial computing and digital twins, enable users to view digital images superimposed on real-world environment, fostering a deeper level of human-digital interactions. However, as a critical element in an AR system, optical combiners face unprecedented challenges to match the exceptional performance requirements of human vision system while keeping the headset ultracompact and lightweight. After decades of extensive device and material research efforts, and heavy investment in manufacturing technologies, several promising waveguide combiners have been developed. In this review paper, we focus on the perspectives and challenges of optical waveguide combiners for AR displays. We will begin by introducing the basic device structures and operation principles of different AR architectures, and then delve into different waveguide combiners, including geometric and diffractive waveguide combiners. Some commonly used in-couplers and out-couplers, such as prisms, mirrors, surface relief gratings, volume holographic gratings, polarization volume gratings, and metasurface-based couplers, will be discussed, and their properties analyzed in detail. Additionally, we will explore recent advances in waveguide combiner design and modeling, such as exit pupil expansion, wide field of view, geometric architectures of waveguide couplers, full-color propagation, and brightness and color uniformity optimization. Finally, we will discuss the bottlenecks and future development trends in waveguide combiner technologies. The objective of this review is to provide a comprehensive overview of the current state of waveguide combiner technologies, analyze their pros and cons, and then present the future challenges of AR displays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
30.40
自引率
0.00%
发文量
0
期刊最新文献
Giant enhancement of nonlinear harmonics of an optical-tweezer phonon laser Polarization-entangled photon-pair source with van der Waals 3R-WS2 crystal Hot-electron dynamics in plasmonic nanostructures: fundamentals, applications and overlooked aspects Multi-resolution analysis enables fidelity-ensured deconvolution for fluorescence microscopy A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1