{"title":"基于机器学习的具有所需正负泊松比的数字复合超材料刚度优化技术","authors":"Xihang Jiang , Fan Liu , Lifeng Wang","doi":"10.1016/j.taml.2023.100485","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures. However, these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures. In this work, a convolutional neural network (CNN) based self-learning multi-objective optimization is performed to design digital composite materials. The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials, along with their corresponding Poisson's ratios and stiffness values. Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint. Furthermore, we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio (negative, zero, or positive). The optimized designs have been successfully and efficiently obtained, and their validity has been confirmed through finite element analysis results. This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000569/pdfft?md5=e44a11e91a49d1f7deb1f2355047b815&pid=1-s2.0-S2095034923000569-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio\",\"authors\":\"Xihang Jiang , Fan Liu , Lifeng Wang\",\"doi\":\"10.1016/j.taml.2023.100485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures. However, these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures. In this work, a convolutional neural network (CNN) based self-learning multi-objective optimization is performed to design digital composite materials. The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials, along with their corresponding Poisson's ratios and stiffness values. Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint. Furthermore, we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio (negative, zero, or positive). The optimized designs have been successfully and efficiently obtained, and their validity has been confirmed through finite element analysis results. This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.</p></div>\",\"PeriodicalId\":46902,\"journal\":{\"name\":\"Theoretical and Applied Mechanics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000569/pdfft?md5=e44a11e91a49d1f7deb1f2355047b815&pid=1-s2.0-S2095034923000569-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics Letters\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095034923000569\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000569","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures. However, these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures. In this work, a convolutional neural network (CNN) based self-learning multi-objective optimization is performed to design digital composite materials. The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials, along with their corresponding Poisson's ratios and stiffness values. Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint. Furthermore, we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio (negative, zero, or positive). The optimized designs have been successfully and efficiently obtained, and their validity has been confirmed through finite element analysis results. This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).