{"title":"用于情感分析的基于 Bert 的图无链接嵌入","authors":"Youkai Jin, Anping Zhao","doi":"10.1007/s40747-023-01289-9","DOIUrl":null,"url":null,"abstract":"<p>Numerous graph neural network (GNN) models have been used for sentiment analysis in recent years. Nevertheless, addressing the issue of over-smoothing in GNNs for node representation and finding more effective ways to learn both global and local information within the graph structure, while improving model efficiency for scalability to large text sentiment corpora, remains a challenge. To tackle these issues, we propose a novel Bert-based unlinked graph embedding (BUGE) model for sentiment analysis. Initially, the model constructs a comprehensive text sentiment heterogeneous graph that more effectively captures global co-occurrence information between words. Next, by using specific sampling strategies, it efficiently preserves both global and local information within the graph structure, enabling nodes to receive more feature information. During the representation learning process, BUGE relies solely on attention mechanisms, without using graph convolutions or aggregation operators, thus avoiding the over-smoothing problem associated with node aggregation. This enhances model training efficiency and reduces memory storage requirements. Extensive experimental results and evaluations demonstrate that the adopted Bert-based unlinked graph embedding method is highly effective for sentiment analysis, especially when applied to large text sentiment corpora.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"19 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bert-based graph unlinked embedding for sentiment analysis\",\"authors\":\"Youkai Jin, Anping Zhao\",\"doi\":\"10.1007/s40747-023-01289-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous graph neural network (GNN) models have been used for sentiment analysis in recent years. Nevertheless, addressing the issue of over-smoothing in GNNs for node representation and finding more effective ways to learn both global and local information within the graph structure, while improving model efficiency for scalability to large text sentiment corpora, remains a challenge. To tackle these issues, we propose a novel Bert-based unlinked graph embedding (BUGE) model for sentiment analysis. Initially, the model constructs a comprehensive text sentiment heterogeneous graph that more effectively captures global co-occurrence information between words. Next, by using specific sampling strategies, it efficiently preserves both global and local information within the graph structure, enabling nodes to receive more feature information. During the representation learning process, BUGE relies solely on attention mechanisms, without using graph convolutions or aggregation operators, thus avoiding the over-smoothing problem associated with node aggregation. This enhances model training efficiency and reduces memory storage requirements. Extensive experimental results and evaluations demonstrate that the adopted Bert-based unlinked graph embedding method is highly effective for sentiment analysis, especially when applied to large text sentiment corpora.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01289-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01289-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bert-based graph unlinked embedding for sentiment analysis
Numerous graph neural network (GNN) models have been used for sentiment analysis in recent years. Nevertheless, addressing the issue of over-smoothing in GNNs for node representation and finding more effective ways to learn both global and local information within the graph structure, while improving model efficiency for scalability to large text sentiment corpora, remains a challenge. To tackle these issues, we propose a novel Bert-based unlinked graph embedding (BUGE) model for sentiment analysis. Initially, the model constructs a comprehensive text sentiment heterogeneous graph that more effectively captures global co-occurrence information between words. Next, by using specific sampling strategies, it efficiently preserves both global and local information within the graph structure, enabling nodes to receive more feature information. During the representation learning process, BUGE relies solely on attention mechanisms, without using graph convolutions or aggregation operators, thus avoiding the over-smoothing problem associated with node aggregation. This enhances model training efficiency and reduces memory storage requirements. Extensive experimental results and evaluations demonstrate that the adopted Bert-based unlinked graph embedding method is highly effective for sentiment analysis, especially when applied to large text sentiment corpora.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.