基于模型的成像方法的 Ricci-Notation 张量框架

Dileepan JosephElectrical and Computer Engineering, University of Alberta
{"title":"基于模型的成像方法的 Ricci-Notation 张量框架","authors":"Dileepan JosephElectrical and Computer Engineering, University of Alberta","doi":"arxiv-2312.04018","DOIUrl":null,"url":null,"abstract":"Model-based approaches to imaging, like specialized image enhancements in\nastronomy, favour physics-based models which facilitate explanations of\nrelationships between observed inputs and computed outputs. While this paper\nfeatures a tutorial example, inspired by exoplanet imaging, that reveals\nembedded 2D fast Fourier transforms in an image enhancement model, the work is\nactually about the tensor algebra and software, or tensor frameworks, available\nfor model-based imaging. The paper proposes a Ricci-notation tensor (RT)\nframework, comprising an extended Ricci notation, which aligns well with the\nsymbolic dual-index algebra of non-Euclidean geometry, and codesigned\nobject-oriented software, called the RTToolbox for MATLAB. Extensions offer\nnovel representations for entrywise, pagewise, and broadcasting operations\npopular in extended matrix-vector (EMV) frameworks for imaging. Complementing\nthe EMV algebra computable with MATLAB, the RTToolbox demonstrates programmatic\nand computational efficiency thanks to careful design of tensor and dual-index\nclasses. Compared to a numeric tensor predecessor, the RT framework enables\nsuperior ways to model imaging problems and, thereby, to develop solutions.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ricci-Notation Tensor Framework for Model-Based Approaches to Imaging\",\"authors\":\"Dileepan JosephElectrical and Computer Engineering, University of Alberta\",\"doi\":\"arxiv-2312.04018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-based approaches to imaging, like specialized image enhancements in\\nastronomy, favour physics-based models which facilitate explanations of\\nrelationships between observed inputs and computed outputs. While this paper\\nfeatures a tutorial example, inspired by exoplanet imaging, that reveals\\nembedded 2D fast Fourier transforms in an image enhancement model, the work is\\nactually about the tensor algebra and software, or tensor frameworks, available\\nfor model-based imaging. The paper proposes a Ricci-notation tensor (RT)\\nframework, comprising an extended Ricci notation, which aligns well with the\\nsymbolic dual-index algebra of non-Euclidean geometry, and codesigned\\nobject-oriented software, called the RTToolbox for MATLAB. Extensions offer\\nnovel representations for entrywise, pagewise, and broadcasting operations\\npopular in extended matrix-vector (EMV) frameworks for imaging. Complementing\\nthe EMV algebra computable with MATLAB, the RTToolbox demonstrates programmatic\\nand computational efficiency thanks to careful design of tensor and dual-index\\nclasses. Compared to a numeric tensor predecessor, the RT framework enables\\nsuperior ways to model imaging problems and, thereby, to develop solutions.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.04018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.04018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于模型的成像方法,如天文学中的专业图像增强,倾向于采用基于物理的模型,以便于解释观测输入和计算输出之间的关系。本文以系外行星成像为例,揭示了图像增强模型中嵌入的二维快速傅立叶变换,实际上是关于基于模型成像的张量代数和软件或张量框架。论文提出了一个里奇符号张量(RT)框架,包括一个扩展的里奇符号(与非欧几里得几何的符号双指数代数非常吻合)和一个面向对象的代码设计软件(称为 MATLAB 的 RTToolbox)。扩展功能为条目式、分页式和广播式运算提供了新颖的表示方法,这些运算在用于成像的扩展矩阵向量(EMV)框架中非常流行。RTToolbox 补充了可通过 MATLAB 计算的 EMV 代数,由于精心设计了张量和双索引类,RTToolbox 展示了编程和计算效率。与数字张量的前身相比,RT 框架能以更优越的方式为成像问题建模,从而开发出解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ricci-Notation Tensor Framework for Model-Based Approaches to Imaging
Model-based approaches to imaging, like specialized image enhancements in astronomy, favour physics-based models which facilitate explanations of relationships between observed inputs and computed outputs. While this paper features a tutorial example, inspired by exoplanet imaging, that reveals embedded 2D fast Fourier transforms in an image enhancement model, the work is actually about the tensor algebra and software, or tensor frameworks, available for model-based imaging. The paper proposes a Ricci-notation tensor (RT) framework, comprising an extended Ricci notation, which aligns well with the symbolic dual-index algebra of non-Euclidean geometry, and codesigned object-oriented software, called the RTToolbox for MATLAB. Extensions offer novel representations for entrywise, pagewise, and broadcasting operations popular in extended matrix-vector (EMV) frameworks for imaging. Complementing the EMV algebra computable with MATLAB, the RTToolbox demonstrates programmatic and computational efficiency thanks to careful design of tensor and dual-index classes. Compared to a numeric tensor predecessor, the RT framework enables superior ways to model imaging problems and, thereby, to develop solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1