Adrian Arendowski, Ewelina Sibińska, Wioletta Miśta, Piotr Fijałkowski, Michał Złoch, Dorota Gabryś, Paweł Pomastowski
{"title":"研究基质辅助激光解吸/电离飞行时间质谱法中样品制备对细菌脂质特征的影响","authors":"Adrian Arendowski, Ewelina Sibińska, Wioletta Miśta, Piotr Fijałkowski, Michał Złoch, Dorota Gabryś, Paweł Pomastowski","doi":"10.1002/lipd.12383","DOIUrl":null,"url":null,"abstract":"<p>Lipids are one of the cell components therefore it is important to be able to accurately assess them. One of the analytical techniques used to study lipid profiles is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The present study attempted to select optimal conditions for sample preparation and MALDI MS analysis of bacterial lipidome in both positive and negative ion modes using different extraction protocols—Folch, Matyash, and Bligh & Dyer, solvents used to apply samples, and matrices such as 9-aminoacridine (9-AA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), 2-mercaptobenzothiazole (MBT), and 2,4,6-trihydroxyacetophenone (THAP). The obtained results allowed concluding that DHB or CHCA matrices are suitable for lipid analysis in the positive mode, and in the negative mode THAP or 9-AA. The most appropriate protocol for extracting lipids from bacterial cells was the Bligh & Dyer method in both ionization modes. The use of the solvent TA30, which was a mixture of acetonitrile and 0.1% trifluoroacetic acid in water, provided on the spectra a significant number of signals from lipids in all groups analyzed, such as fatty acyls, glycerolipids, and glycerophospholipids.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":"59 1","pages":"13-26"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of sample preparation influence on bacterial lipids profile in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry\",\"authors\":\"Adrian Arendowski, Ewelina Sibińska, Wioletta Miśta, Piotr Fijałkowski, Michał Złoch, Dorota Gabryś, Paweł Pomastowski\",\"doi\":\"10.1002/lipd.12383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lipids are one of the cell components therefore it is important to be able to accurately assess them. One of the analytical techniques used to study lipid profiles is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The present study attempted to select optimal conditions for sample preparation and MALDI MS analysis of bacterial lipidome in both positive and negative ion modes using different extraction protocols—Folch, Matyash, and Bligh & Dyer, solvents used to apply samples, and matrices such as 9-aminoacridine (9-AA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), 2-mercaptobenzothiazole (MBT), and 2,4,6-trihydroxyacetophenone (THAP). The obtained results allowed concluding that DHB or CHCA matrices are suitable for lipid analysis in the positive mode, and in the negative mode THAP or 9-AA. The most appropriate protocol for extracting lipids from bacterial cells was the Bligh & Dyer method in both ionization modes. The use of the solvent TA30, which was a mixture of acetonitrile and 0.1% trifluoroacetic acid in water, provided on the spectra a significant number of signals from lipids in all groups analyzed, such as fatty acyls, glycerolipids, and glycerophospholipids.</p>\",\"PeriodicalId\":18086,\"journal\":{\"name\":\"Lipids\",\"volume\":\"59 1\",\"pages\":\"13-26\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lipd.12383\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lipd.12383","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Study of sample preparation influence on bacterial lipids profile in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Lipids are one of the cell components therefore it is important to be able to accurately assess them. One of the analytical techniques used to study lipid profiles is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The present study attempted to select optimal conditions for sample preparation and MALDI MS analysis of bacterial lipidome in both positive and negative ion modes using different extraction protocols—Folch, Matyash, and Bligh & Dyer, solvents used to apply samples, and matrices such as 9-aminoacridine (9-AA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), 2-mercaptobenzothiazole (MBT), and 2,4,6-trihydroxyacetophenone (THAP). The obtained results allowed concluding that DHB or CHCA matrices are suitable for lipid analysis in the positive mode, and in the negative mode THAP or 9-AA. The most appropriate protocol for extracting lipids from bacterial cells was the Bligh & Dyer method in both ionization modes. The use of the solvent TA30, which was a mixture of acetonitrile and 0.1% trifluoroacetic acid in water, provided on the spectra a significant number of signals from lipids in all groups analyzed, such as fatty acyls, glycerolipids, and glycerophospholipids.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.