重构外国直接投资网络以寻找最终东道国经济的概率方法

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY Advances in Data Analysis and Classification Pub Date : 2023-12-08 DOI:10.1007/s11634-023-00571-5
Nadia Accoto, Valerio Astuti, Costanza Catalano
{"title":"重构外国直接投资网络以寻找最终东道国经济的概率方法","authors":"Nadia Accoto, Valerio Astuti, Costanza Catalano","doi":"10.1007/s11634-023-00571-5","DOIUrl":null,"url":null,"abstract":"<p>The Ultimate Host Economies (UHEs) of a given country are defined as the ultimate destinations of Foreign Direct Investment (FDI) originating in that country. Bilateral FDI statistics struggle to identify them due to the non-negligible presence of conduit jurisdictions, which provide attractive intermediate destinations for pass-through investments due to favorable tax regimes. At the same time, determining UHEs is crucial for understanding the actual paths followed by FDI among increasingly interdependent economies. In this paper, we first reconstruct the global FDI network through mirroring and clustering techniques, starting from data collected by the International Monetary Fund. Then we provide a method for computing an (approximate) distribution of the UHEs of a country by using a probabilistic approach to this network, based on Markov chains. More specifically, we analyze the Italian case.</p>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"251 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic method for reconstructing the Foreign Direct Investments network in search of ultimate host economies\",\"authors\":\"Nadia Accoto, Valerio Astuti, Costanza Catalano\",\"doi\":\"10.1007/s11634-023-00571-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Ultimate Host Economies (UHEs) of a given country are defined as the ultimate destinations of Foreign Direct Investment (FDI) originating in that country. Bilateral FDI statistics struggle to identify them due to the non-negligible presence of conduit jurisdictions, which provide attractive intermediate destinations for pass-through investments due to favorable tax regimes. At the same time, determining UHEs is crucial for understanding the actual paths followed by FDI among increasingly interdependent economies. In this paper, we first reconstruct the global FDI network through mirroring and clustering techniques, starting from data collected by the International Monetary Fund. Then we provide a method for computing an (approximate) distribution of the UHEs of a country by using a probabilistic approach to this network, based on Markov chains. More specifically, we analyze the Italian case.</p>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"251 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11634-023-00571-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11634-023-00571-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

特定国家的最终东道国经济体(UHEs)被定义为源自该国的外国直接投资(FDI)的最终目的地。双边外国直接投资统计数据难以确定这些经济体,原因是管道管辖区的存在不容忽视,这些管辖区因税收制度优惠而为转手投资提供了有吸引力的中间目的地。同时,确定超常规经济体对于了解日益相互依存的经济体之间外国直接投资的实际路径至关重要。在本文中,我们首先从国际货币基金组织收集的数据出发,通过镜像和聚类技术重建全球外国直接投资网络。然后,我们提供了一种方法,通过使用基于马尔可夫链的概率方法来计算一个国家的超高净值(近似)分布。更具体地说,我们分析了意大利的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A probabilistic method for reconstructing the Foreign Direct Investments network in search of ultimate host economies

The Ultimate Host Economies (UHEs) of a given country are defined as the ultimate destinations of Foreign Direct Investment (FDI) originating in that country. Bilateral FDI statistics struggle to identify them due to the non-negligible presence of conduit jurisdictions, which provide attractive intermediate destinations for pass-through investments due to favorable tax regimes. At the same time, determining UHEs is crucial for understanding the actual paths followed by FDI among increasingly interdependent economies. In this paper, we first reconstruct the global FDI network through mirroring and clustering techniques, starting from data collected by the International Monetary Fund. Then we provide a method for computing an (approximate) distribution of the UHEs of a country by using a probabilistic approach to this network, based on Markov chains. More specifically, we analyze the Italian case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
期刊最新文献
Editorial for ADAC issue 4 of volume 18 (2024) Special issue on “New methodologies in clustering and classification for complex and/or big data” Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks Using Bagging to improve clustering methods in the context of three-dimensional shapes The chiPower transformation: a valid alternative to logratio transformations in compositional data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1