GAN-Place:利用生成式对抗网络和迁移学习将开源拼版器提升至商业质量

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2023-12-06 DOI:10.1145/3636461
Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, Sung Kyu Lim
{"title":"GAN-Place:利用生成式对抗网络和迁移学习将开源拼版器提升至商业质量","authors":"Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, Sung Kyu Lim","doi":"10.1145/3636461","DOIUrl":null,"url":null,"abstract":"<p>Recently, GPU-accelerated placers such as DREAMPlace and Xplace have demonstrated their superiority over traditional CPU-reliant placers by achieving orders of magnitude speed up in placement runtime. However, due to their limited focus in placement objectives (e.g., wirelength and density), the placement quality achieved by DREAMPlace or Xplace is not comparable to that of commercial tools. In this paper, to bridge the gap between open-source and commercial placers, we present a novel placement optimization framework named GAN-Place that employs generative adversarial learning to transfer the placement quality of the industry-leading commercial placer, Synopsys ICC2, to existing open-source GPU-accelerated placers (DREAMPlace and Xplace). Without the knowledge of the underlying proprietary algorithms or constraints used by the commercial tools, our framework facilitates transfer learning to directly enhance the open-source placers by optimizing the proposed differentiable loss that denotes the “similarity” between DREAMPlace- or Xplace-generated placements and those in commercial databases. Experimental results on 7 industrial designs not only show the our GAN-Place immediately improves the Power, Performance, and Area (PPA) metrics at the placement stage, but also demonstrate that these improvements last firmly to the post-route stage, where we observe improvements by up to 8.3% in wirelength, 7.4% in power, and 37.6% in Total Negative Slack (TNS) on a commercial CPU benchmark.</p>","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAN-Place: Advancing Open-Source Placers to Commercial-Quality using Generative Adversarial Networks and Transfer Learning\",\"authors\":\"Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, Sung Kyu Lim\",\"doi\":\"10.1145/3636461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, GPU-accelerated placers such as DREAMPlace and Xplace have demonstrated their superiority over traditional CPU-reliant placers by achieving orders of magnitude speed up in placement runtime. However, due to their limited focus in placement objectives (e.g., wirelength and density), the placement quality achieved by DREAMPlace or Xplace is not comparable to that of commercial tools. In this paper, to bridge the gap between open-source and commercial placers, we present a novel placement optimization framework named GAN-Place that employs generative adversarial learning to transfer the placement quality of the industry-leading commercial placer, Synopsys ICC2, to existing open-source GPU-accelerated placers (DREAMPlace and Xplace). Without the knowledge of the underlying proprietary algorithms or constraints used by the commercial tools, our framework facilitates transfer learning to directly enhance the open-source placers by optimizing the proposed differentiable loss that denotes the “similarity” between DREAMPlace- or Xplace-generated placements and those in commercial databases. Experimental results on 7 industrial designs not only show the our GAN-Place immediately improves the Power, Performance, and Area (PPA) metrics at the placement stage, but also demonstrate that these improvements last firmly to the post-route stage, where we observe improvements by up to 8.3% in wirelength, 7.4% in power, and 37.6% in Total Negative Slack (TNS) on a commercial CPU benchmark.</p>\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3636461\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3636461","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

最近,DREAMPlace 和 Xplace 等 GPU 加速放置器已证明其优于传统的 CPU 依赖放置器,在放置运行时间上实现了数量级的加速。然而,由于 DREAMPlace 或 Xplace 对布局目标(如线长和密度)的关注有限,其实现的布局质量无法与商业工具相媲美。在本文中,为了缩小开源和商业贴片机之间的差距,我们提出了一个名为 GAN-Place 的新型贴片优化框架,该框架采用生成对抗学习,将业界领先的商业贴片机 Synopsys ICC2 的贴片质量转移到现有的开源 GPU 加速贴片机(DREAMPlace 和 Xplace)上。在不了解商业工具所使用的底层专有算法或约束条件的情况下,我们的框架促进了迁移学习,通过优化提议的可微分损失(表示 DREAMPlace 或 Xplace 生成的布局与商业数据库中的布局之间的 "相似性")来直接增强开源布局器。在 7 个工业设计上的实验结果表明,我们的 GAN-Place 不仅在布局阶段立即改善了功耗、性能和面积 (PPA) 指标,而且还证明了这些改善在布线后阶段也会持续下去,我们观察到在商业 CPU 基准上,布线长度改善了 8.3%,功耗改善了 7.4%,总负松弛 (TNS) 改善了 37.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GAN-Place: Advancing Open-Source Placers to Commercial-Quality using Generative Adversarial Networks and Transfer Learning

Recently, GPU-accelerated placers such as DREAMPlace and Xplace have demonstrated their superiority over traditional CPU-reliant placers by achieving orders of magnitude speed up in placement runtime. However, due to their limited focus in placement objectives (e.g., wirelength and density), the placement quality achieved by DREAMPlace or Xplace is not comparable to that of commercial tools. In this paper, to bridge the gap between open-source and commercial placers, we present a novel placement optimization framework named GAN-Place that employs generative adversarial learning to transfer the placement quality of the industry-leading commercial placer, Synopsys ICC2, to existing open-source GPU-accelerated placers (DREAMPlace and Xplace). Without the knowledge of the underlying proprietary algorithms or constraints used by the commercial tools, our framework facilitates transfer learning to directly enhance the open-source placers by optimizing the proposed differentiable loss that denotes the “similarity” between DREAMPlace- or Xplace-generated placements and those in commercial databases. Experimental results on 7 industrial designs not only show the our GAN-Place immediately improves the Power, Performance, and Area (PPA) metrics at the placement stage, but also demonstrate that these improvements last firmly to the post-route stage, where we observe improvements by up to 8.3% in wirelength, 7.4% in power, and 37.6% in Total Negative Slack (TNS) on a commercial CPU benchmark.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1