P. I. Zaripov, Yu. D. Kuleshova, Yu. M. Poluektov, S. V. Sidorenko, O. K. Kvan, G. V. Maksimov, V. A. Mitkevich, A. A. Makarov, I. Yu. Petrushanko
{"title":"红细胞的代谢压力诱导血红蛋白的谷胱甘肽化","authors":"P. I. Zaripov, Yu. D. Kuleshova, Yu. M. Poluektov, S. V. Sidorenko, O. K. Kvan, G. V. Maksimov, V. A. Mitkevich, A. A. Makarov, I. Yu. Petrushanko","doi":"10.1134/s0026893323060225","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium to simulate blood plasma led to a two-fold decrease in the ATP level into them. The cell size, as well as intracellular sodium concentration increased. These findings could be the result of a disruption in ion transporter functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and a significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH) decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The cause was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and, probably, due to a decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.</p>","PeriodicalId":18734,"journal":{"name":"Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Stress of Red Blood Cells Induces Hemoglobin Glutathionylation\",\"authors\":\"P. I. Zaripov, Yu. D. Kuleshova, Yu. M. Poluektov, S. V. Sidorenko, O. K. Kvan, G. V. Maksimov, V. A. Mitkevich, A. A. Makarov, I. Yu. Petrushanko\",\"doi\":\"10.1134/s0026893323060225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium to simulate blood plasma led to a two-fold decrease in the ATP level into them. The cell size, as well as intracellular sodium concentration increased. These findings could be the result of a disruption in ion transporter functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and a significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH) decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The cause was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and, probably, due to a decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.</p>\",\"PeriodicalId\":18734,\"journal\":{\"name\":\"Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s0026893323060225\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026893323060225","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
摘要-缺乏葡萄糖导致的代谢压力会严重影响红细胞的状态,而糖酵解是产生 ATP 的主要途径。低血糖既可能是生理性的(发生在空腹和重体力劳动时),也可能是病理性的(伴随多种疾病,如糖尿病)。在这项研究中,我们描述了离体红细胞在葡萄糖缺失导致的代谢压力下的状态。结果表明,红细胞在模拟血浆的无葡萄糖培养基中培养 24 小时后,其体内的 ATP 水平下降了两倍。细胞体积和细胞内钠浓度都有所增加。这些发现可能是由于 ATP 水平下降导致离子转运功能紊乱的结果。钙含量保持不变。在离体红细胞培养基中缺乏葡萄糖的情况下,ROS 没有增加,一氧化氮的水平有显著变化,而细胞的主要低分子量硫醇--谷胱甘肽(GSH)的水平下降了近 2 倍。研究发现,尽管 ROS 没有增长,但离体红细胞的新陈代谢压力诱导了血红蛋白的谷胱甘肽化。原因是 ATP 缺乏,抑制了 GSH 的合成,导致 GSH 水平下降,也可能是由于谷胱甘肽(GSSG)还原和蛋白质脱谷胱甘肽化所需的 NADPH 水平下降。因此,红细胞代谢压力诱导血红蛋白谷胱甘肽化,与 ROS 的增加无关。这可能具有重要的生理意义,因为血红蛋白的谷胱甘肽化会改变其对氧气的亲和力。
Metabolic Stress of Red Blood Cells Induces Hemoglobin Glutathionylation
Abstract—Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium to simulate blood plasma led to a two-fold decrease in the ATP level into them. The cell size, as well as intracellular sodium concentration increased. These findings could be the result of a disruption in ion transporter functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and a significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH) decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The cause was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and, probably, due to a decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.
期刊介绍:
Molecular Biology is an international peer reviewed journal that covers a wide scope of problems in molecular, cell and computational biology including genomics, proteomics, bioinformatics, molecular virology and immunology, molecular development biology, molecular evolution and related areals. Molecular Biology publishes reviews, experimental and theoretical works. Every year, the journal publishes special issues devoted to most rapidly developing branches of physical-chemical biology and to the most outstanding scientists.