Matthias Henkies, Knut Vilhelm Høyland, Aleksey Shestov, Christiane Duscha, Anna Sjöblom
{"title":"北极峡湾风:斯瓦尔巴特峡湾山谷中海风和山谷风结合的特点","authors":"Matthias Henkies, Knut Vilhelm Høyland, Aleksey Shestov, Christiane Duscha, Anna Sjöblom","doi":"10.1007/s10546-023-00840-y","DOIUrl":null,"url":null,"abstract":"<p>Thermally-driven circulations are a frequent meteorological phenomenon in complex Arctic terrain, but the Arctic fjord breeze, a combined sea-breeze and up-valley wind, has received little attention. A field campaign was conducted in the valley Adventdalen in Svalbard in summer 2022 using a Scanning Doppler Lidar and automatic weather stations. It is shown that a local up-valley circulation occurred frequently in this valley, and that it was driven by the temperature and pressure gradient between valley and fjord, i.e., a fjord breeze. The fjord breeze existed in both large-scale up-valley and down-valley winds. Its strength, extent and depth varied due to the diurnal cycle of solar irradiation as well as the interaction with large-scale winds. In contrast to typical lower-latitude breezes, the Arctic fjord breeze could persist over several days. The breeze was found to be relatively strong even under small horizontal temperature contrasts and opposing large-scale winds, possibly due to an increase in the thermal pressure gradient by the surrounding topography.\n</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"5 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Arctic Fjord Breeze: Characteristics of a Combined Sea Breeze and Valley Wind in a Svalbard Fjord Valley\",\"authors\":\"Matthias Henkies, Knut Vilhelm Høyland, Aleksey Shestov, Christiane Duscha, Anna Sjöblom\",\"doi\":\"10.1007/s10546-023-00840-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermally-driven circulations are a frequent meteorological phenomenon in complex Arctic terrain, but the Arctic fjord breeze, a combined sea-breeze and up-valley wind, has received little attention. A field campaign was conducted in the valley Adventdalen in Svalbard in summer 2022 using a Scanning Doppler Lidar and automatic weather stations. It is shown that a local up-valley circulation occurred frequently in this valley, and that it was driven by the temperature and pressure gradient between valley and fjord, i.e., a fjord breeze. The fjord breeze existed in both large-scale up-valley and down-valley winds. Its strength, extent and depth varied due to the diurnal cycle of solar irradiation as well as the interaction with large-scale winds. In contrast to typical lower-latitude breezes, the Arctic fjord breeze could persist over several days. The breeze was found to be relatively strong even under small horizontal temperature contrasts and opposing large-scale winds, possibly due to an increase in the thermal pressure gradient by the surrounding topography.\\n</p>\",\"PeriodicalId\":9153,\"journal\":{\"name\":\"Boundary-Layer Meteorology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary-Layer Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10546-023-00840-y\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10546-023-00840-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Arctic Fjord Breeze: Characteristics of a Combined Sea Breeze and Valley Wind in a Svalbard Fjord Valley
Thermally-driven circulations are a frequent meteorological phenomenon in complex Arctic terrain, but the Arctic fjord breeze, a combined sea-breeze and up-valley wind, has received little attention. A field campaign was conducted in the valley Adventdalen in Svalbard in summer 2022 using a Scanning Doppler Lidar and automatic weather stations. It is shown that a local up-valley circulation occurred frequently in this valley, and that it was driven by the temperature and pressure gradient between valley and fjord, i.e., a fjord breeze. The fjord breeze existed in both large-scale up-valley and down-valley winds. Its strength, extent and depth varied due to the diurnal cycle of solar irradiation as well as the interaction with large-scale winds. In contrast to typical lower-latitude breezes, the Arctic fjord breeze could persist over several days. The breeze was found to be relatively strong even under small horizontal temperature contrasts and opposing large-scale winds, possibly due to an increase in the thermal pressure gradient by the surrounding topography.
期刊介绍:
Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.