{"title":"深入分析用于上下文文档排序的段落级标签转移","authors":"Koustav Rudra, Zeon Trevor Fernando, Avishek Anand","doi":"10.1007/s10791-023-09430-5","DOIUrl":null,"url":null,"abstract":"<p>Pre-trained contextual language models such as BERT, GPT, and XLnet work quite well for document retrieval tasks. Such models are fine-tuned based on the query-document/query-passage level relevance labels to capture the ranking signals. However, the documents are longer than the passages and such document ranking models suffer from the token limitation (512) of BERT. Researchers proposed ranking strategies that either truncate the documents beyond the token limit or chunk the documents into units that can fit into the BERT. In the later case, the relevance labels are either directly transferred from the original query-document pair or learned through some external model. In this paper, we conduct a detailed study of the design decisions about splitting and label transfer on retrieval effectiveness and efficiency. We find that direct transfer of relevance labels from documents to passages introduces <i>label noise</i> that strongly affects retrieval effectiveness for large training datasets. We also find that query processing times are adversely affected by fine-grained splitting schemes. As a remedy, we propose a careful passage level labelling scheme using weak supervision that delivers improved performance (3–14% in terms of nDCG score) over most of the recently proposed models for ad-hoc retrieval while maintaining manageable computational complexity on four diverse document retrieval datasets.</p>","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"64 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An in-depth analysis of passage-level label transfer for contextual document ranking\",\"authors\":\"Koustav Rudra, Zeon Trevor Fernando, Avishek Anand\",\"doi\":\"10.1007/s10791-023-09430-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pre-trained contextual language models such as BERT, GPT, and XLnet work quite well for document retrieval tasks. Such models are fine-tuned based on the query-document/query-passage level relevance labels to capture the ranking signals. However, the documents are longer than the passages and such document ranking models suffer from the token limitation (512) of BERT. Researchers proposed ranking strategies that either truncate the documents beyond the token limit or chunk the documents into units that can fit into the BERT. In the later case, the relevance labels are either directly transferred from the original query-document pair or learned through some external model. In this paper, we conduct a detailed study of the design decisions about splitting and label transfer on retrieval effectiveness and efficiency. We find that direct transfer of relevance labels from documents to passages introduces <i>label noise</i> that strongly affects retrieval effectiveness for large training datasets. We also find that query processing times are adversely affected by fine-grained splitting schemes. As a remedy, we propose a careful passage level labelling scheme using weak supervision that delivers improved performance (3–14% in terms of nDCG score) over most of the recently proposed models for ad-hoc retrieval while maintaining manageable computational complexity on four diverse document retrieval datasets.</p>\",\"PeriodicalId\":54352,\"journal\":{\"name\":\"Information Retrieval Journal\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Retrieval Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10791-023-09430-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-023-09430-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An in-depth analysis of passage-level label transfer for contextual document ranking
Pre-trained contextual language models such as BERT, GPT, and XLnet work quite well for document retrieval tasks. Such models are fine-tuned based on the query-document/query-passage level relevance labels to capture the ranking signals. However, the documents are longer than the passages and such document ranking models suffer from the token limitation (512) of BERT. Researchers proposed ranking strategies that either truncate the documents beyond the token limit or chunk the documents into units that can fit into the BERT. In the later case, the relevance labels are either directly transferred from the original query-document pair or learned through some external model. In this paper, we conduct a detailed study of the design decisions about splitting and label transfer on retrieval effectiveness and efficiency. We find that direct transfer of relevance labels from documents to passages introduces label noise that strongly affects retrieval effectiveness for large training datasets. We also find that query processing times are adversely affected by fine-grained splitting schemes. As a remedy, we propose a careful passage level labelling scheme using weak supervision that delivers improved performance (3–14% in terms of nDCG score) over most of the recently proposed models for ad-hoc retrieval while maintaining manageable computational complexity on four diverse document retrieval datasets.
期刊介绍:
The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.