{"title":"虚构的网络主题:社交网络中假阳性和假阴性的结构模式","authors":"Kyosuke Tanaka , George G. Vega Yon","doi":"10.1016/j.socnet.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the structural patterns in the cognitive representation of social networks by systematically classifying false positives and negatives. Although existing literature on Cognitive Social Structures (CSS) has begun exploring false positives and negatives by comparing actual and perceived networks, it has not differentiated simultaneous occurrences of true and false positives and negatives on network motifs, such as reciprocity and triadic closure. Here, we propose a theoretical framework to categorize three classes of errors we call <em>imaginary network motifs</em> as combinations of accurately and erroneously perceived ties: (a) partially false, (b) completely false, and (c) mixed false. Using four published CSS data sets, we empirically test which imaginary network motifs are significantly more or less present in different types of perceived networks than the corresponding actual networks. Our results confirm that people not only fill in the blanks as suggested in the prior research but also conceive other imaginary structures. The findings advance our understanding of perception gaps between actual and perceived networks and have implications for designing more accurate network modeling and sampling.</p></div>","PeriodicalId":48353,"journal":{"name":"Social Networks","volume":"78 ","pages":"Pages 65-80"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378873323000813/pdfft?md5=2bdaecdf8a2ca54a39f116bd92c1e5e3&pid=1-s2.0-S0378873323000813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Imaginary network motifs: Structural patterns of false positives and negatives in social networks\",\"authors\":\"Kyosuke Tanaka , George G. Vega Yon\",\"doi\":\"10.1016/j.socnet.2023.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We examine the structural patterns in the cognitive representation of social networks by systematically classifying false positives and negatives. Although existing literature on Cognitive Social Structures (CSS) has begun exploring false positives and negatives by comparing actual and perceived networks, it has not differentiated simultaneous occurrences of true and false positives and negatives on network motifs, such as reciprocity and triadic closure. Here, we propose a theoretical framework to categorize three classes of errors we call <em>imaginary network motifs</em> as combinations of accurately and erroneously perceived ties: (a) partially false, (b) completely false, and (c) mixed false. Using four published CSS data sets, we empirically test which imaginary network motifs are significantly more or less present in different types of perceived networks than the corresponding actual networks. Our results confirm that people not only fill in the blanks as suggested in the prior research but also conceive other imaginary structures. The findings advance our understanding of perception gaps between actual and perceived networks and have implications for designing more accurate network modeling and sampling.</p></div>\",\"PeriodicalId\":48353,\"journal\":{\"name\":\"Social Networks\",\"volume\":\"78 \",\"pages\":\"Pages 65-80\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378873323000813/pdfft?md5=2bdaecdf8a2ca54a39f116bd92c1e5e3&pid=1-s2.0-S0378873323000813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Networks\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378873323000813\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Networks","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378873323000813","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Imaginary network motifs: Structural patterns of false positives and negatives in social networks
We examine the structural patterns in the cognitive representation of social networks by systematically classifying false positives and negatives. Although existing literature on Cognitive Social Structures (CSS) has begun exploring false positives and negatives by comparing actual and perceived networks, it has not differentiated simultaneous occurrences of true and false positives and negatives on network motifs, such as reciprocity and triadic closure. Here, we propose a theoretical framework to categorize three classes of errors we call imaginary network motifs as combinations of accurately and erroneously perceived ties: (a) partially false, (b) completely false, and (c) mixed false. Using four published CSS data sets, we empirically test which imaginary network motifs are significantly more or less present in different types of perceived networks than the corresponding actual networks. Our results confirm that people not only fill in the blanks as suggested in the prior research but also conceive other imaginary structures. The findings advance our understanding of perception gaps between actual and perceived networks and have implications for designing more accurate network modeling and sampling.
期刊介绍:
Social Networks is an interdisciplinary and international quarterly. It provides a common forum for representatives of anthropology, sociology, history, social psychology, political science, human geography, biology, economics, communications science and other disciplines who share an interest in the study of the empirical structure of social relations and associations that may be expressed in network form. It publishes both theoretical and substantive papers. Critical reviews of major theoretical or methodological approaches using the notion of networks in the analysis of social behaviour are also included, as are reviews of recent books dealing with social networks and social structure.