膜脱气技术的开发和新兴应用

Hongyu Chen , Zhiying Lu , Yangming Cheng , Enrico Drioli , Zhaohui Wang , Feng Zhang , Zhaoliang Cui
{"title":"膜脱气技术的开发和新兴应用","authors":"Hongyu Chen ,&nbsp;Zhiying Lu ,&nbsp;Yangming Cheng ,&nbsp;Enrico Drioli ,&nbsp;Zhaohui Wang ,&nbsp;Feng Zhang ,&nbsp;Zhaoliang Cui","doi":"10.1016/j.advmem.2023.100076","DOIUrl":null,"url":null,"abstract":"<div><p>With the development of membrane separation technology, some traditional separation and purification methods have been replaced by membrane technology. Compared to traditional method, the membrane method has the advantages of small footprint, low energy consumption, safe operation and high removal rate. At present, membrane degassing has become a crucial step in ultra-pure water production for semiconductor industries, and it is also used in ink bubble removal and various wastewater treatment. This paper summarizes the advantages of membrane degassing compared with other gas-liquid separation methods, and introduces polymeric membrane materials used for degassing and their merits and drawbacks. The greatest challenge encountered in membrane degassing is the resistance to wetting phenomenon. This paper provides solutions to wetting phenomenon, which increases the possibility of widespread application of membrane degassing technology and the adaptability of membrane degassing technology to more demanding use scenarios. Finally, the application scenarios of membrane degassing technology are summarized and future prespectives are provided.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"3 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823423000179/pdfft?md5=adcb94d276626d41f111fca182e28e7d&pid=1-s2.0-S2772823423000179-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and emerging application of membrane degassing technology\",\"authors\":\"Hongyu Chen ,&nbsp;Zhiying Lu ,&nbsp;Yangming Cheng ,&nbsp;Enrico Drioli ,&nbsp;Zhaohui Wang ,&nbsp;Feng Zhang ,&nbsp;Zhaoliang Cui\",\"doi\":\"10.1016/j.advmem.2023.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the development of membrane separation technology, some traditional separation and purification methods have been replaced by membrane technology. Compared to traditional method, the membrane method has the advantages of small footprint, low energy consumption, safe operation and high removal rate. At present, membrane degassing has become a crucial step in ultra-pure water production for semiconductor industries, and it is also used in ink bubble removal and various wastewater treatment. This paper summarizes the advantages of membrane degassing compared with other gas-liquid separation methods, and introduces polymeric membrane materials used for degassing and their merits and drawbacks. The greatest challenge encountered in membrane degassing is the resistance to wetting phenomenon. This paper provides solutions to wetting phenomenon, which increases the possibility of widespread application of membrane degassing technology and the adaptability of membrane degassing technology to more demanding use scenarios. Finally, the application scenarios of membrane degassing technology are summarized and future prespectives are provided.</p></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"3 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772823423000179/pdfft?md5=adcb94d276626d41f111fca182e28e7d&pid=1-s2.0-S2772823423000179-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823423000179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823423000179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着膜分离技术的发展,一些传统的分离提纯方法已被膜技术所取代。与传统方法相比,膜法具有占地面积小、能耗低、操作安全、去除率高等优点。目前,膜法脱气已成为半导体工业超纯水生产的关键步骤,也被用于去除油墨气泡和各种废水处理。本文总结了膜脱气与其他气液分离方法相比的优势,并介绍了用于脱气的高分子膜材料及其优缺点。膜脱气过程中遇到的最大挑战是抗润湿现象。本文提供了解决湿润现象的方法,这增加了膜脱气技术广泛应用的可能性,并使膜脱气技术能够适应更苛刻的使用场景。最后,总结了膜脱气技术的应用场景,并对未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and emerging application of membrane degassing technology

With the development of membrane separation technology, some traditional separation and purification methods have been replaced by membrane technology. Compared to traditional method, the membrane method has the advantages of small footprint, low energy consumption, safe operation and high removal rate. At present, membrane degassing has become a crucial step in ultra-pure water production for semiconductor industries, and it is also used in ink bubble removal and various wastewater treatment. This paper summarizes the advantages of membrane degassing compared with other gas-liquid separation methods, and introduces polymeric membrane materials used for degassing and their merits and drawbacks. The greatest challenge encountered in membrane degassing is the resistance to wetting phenomenon. This paper provides solutions to wetting phenomenon, which increases the possibility of widespread application of membrane degassing technology and the adaptability of membrane degassing technology to more demanding use scenarios. Finally, the application scenarios of membrane degassing technology are summarized and future prespectives are provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
期刊最新文献
Progress in design of halloysite nanotubes-polymer nanocomposite membranes and their applications Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics Spray-assisted assembly of thin-film composite membranes in one process Erratum regarding Declaration of Competing Interest statements in previously published articles Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1