微藻-细菌共生对废水中新出现的污染物的反应研究进展

Yang Bai, Bin Ji
{"title":"微藻-细菌共生对废水中新出现的污染物的反应研究进展","authors":"Yang Bai, Bin Ji","doi":"10.1007/s11274-023-03819-6","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater\",\"authors\":\"Yang Bai, Bin Ji\",\"doi\":\"10.1007/s11274-023-03819-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":23744,\"journal\":{\"name\":\"World Journal of Microbiology and Biotechnology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Microbiology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-023-03819-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11274-023-03819-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,抗生素、重金属、纳米颗粒和微塑料等新兴污染物在废水中广泛使用和存在。作为废水处理的绿色替代品,微藻-细菌共生被认为具有能耗低、温室气体排放少等多重优点。因此,微藻-细菌共生对废水处理中新出现的污染物的响应成为近年来的热点。本文综述了微藻-细菌共生对含新兴污染物废水中有机物、氮和磷的去除性能。本文分析了微藻-细菌共生对新兴污染物的适应机制。研究发现,抗生素通常会对微藻-细菌共生产生激素效应,微藻-细菌共生似乎更有能力去除四环素和磺胺甲噁唑,而不是土霉素和恩诺沙星。一般来说,微藻-细菌共生能适应浓度低于 1 毫克/升的重金属,但当重金属浓度达到 10 毫克/升时,其去除污染物的能力就会受到明显影响。进一步的研究应关注混合的新兴污染物对微藻-细菌共生的影响,同时也应探讨将选定的新兴污染物(如抗生素)作为微藻-细菌共生的碳源的可行性。本综述有望加深我们对利用微藻-细菌共生去除废水中新出现的污染物的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater

Nowadays, emerging pollutants are widely used and exist in wastewater, such as antibiotics, heavy metals, nanoparticle and microplastic. As a green alternative for wastewater treatment, microalgal-bacterial symbiosis has been aware of owning multiple merits of low energy consumption and little greenhouse gas emission. Thus, the responses of microalgal-bacterial symbiosis to emerging pollutants in wastewater treatment have become a hotspot in recent years. In this review paper, the removal performance of microalgal-bacterial symbiosis on organics, nitrogen and phosphorus in wastewater containing emerging pollutants has been summarized. The adaptation mechanisms of microalgal-bacterial symbiosis to emerging pollutants have been analyzed. It is found that antibiotics usually have hormesis effects on microalgal-bacterial symbiosis, and that microalgal-bacterial symbiosis appears to show more capacity to remove tetracycline and sulfamethoxazole, rather than oxytetracycline and enrofloxacin. Generally, microalgal-bacterial symbiosis can adapt to heavy metals at a concentration of less than 1 mg/L, but its capabilities to remove contaminants can be significantly affected at 10 mg/L heavy metals. Further research should focus on the influence of mixed emerging pollutants on microalgal-bacterial symbiosis, and the feasibility of using selected emerging pollutants (e.g., antibiotics) as a carbon source for microalgal-bacterial symbiosis should also be explored. This review is expected to deepen our understandings on emerging pollutants removal from wastewater by microalgal-bacterial symbiosis.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of different trophic conditions on total fatty acids, amino acids, pigment and gene expression profiles in Euglena gracilis An efficient approach for overproduction of DNA polymerase from Pyrococcus furiosus using an optimized autoinduction system in Escherichia coli The divergence of DHN-derived melanin pathways in Metarhizium robertsii Understanding microbial biomineralization at the molecular level: recent advances Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1