{"title":"力学在化学中的应用:耦合化学反应的动态行为与二体振荡器的动态行为的比较","authors":"Fernando Secco, Tarita Biver","doi":"10.1007/s10953-023-01334-8","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic behaviour of a chemical system made of two coupled reactions is compared with that of a mechanical system consisting of two oscillating bodies connected by springs. First, the principle of energy departure from equilibrium is employed to derive the motion equations of both systems. Subsequently, the relevant characteristic frequencies and the amplitude parameters are obtained and analysed in terms of “Normal Modes”. The results show that systems belonging to different branches of science can be analysed using the same methodologies. To elucidate the application of Normal Modes to chemistry, the dynamic analysis of a system consisting of a proton transfer reaction coupled to a complex formation reaction is described in the Supporting Information: the procedure enables the evaluation of rate constants, equilibrium constants and reaction enthalpies of a reacting chemical system made of two coupled reactions. The method is then extended to a cycle of three reactions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10953-023-01334-8.pdf","citationCount":"0","resultStr":"{\"title\":\"An Application of Mechanics to Chemistry: the Dynamic Behaviour of Coupled Chemical Reactions Compared to that of the Two-Body Oscillator\",\"authors\":\"Fernando Secco, Tarita Biver\",\"doi\":\"10.1007/s10953-023-01334-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic behaviour of a chemical system made of two coupled reactions is compared with that of a mechanical system consisting of two oscillating bodies connected by springs. First, the principle of energy departure from equilibrium is employed to derive the motion equations of both systems. Subsequently, the relevant characteristic frequencies and the amplitude parameters are obtained and analysed in terms of “Normal Modes”. The results show that systems belonging to different branches of science can be analysed using the same methodologies. To elucidate the application of Normal Modes to chemistry, the dynamic analysis of a system consisting of a proton transfer reaction coupled to a complex formation reaction is described in the Supporting Information: the procedure enables the evaluation of rate constants, equilibrium constants and reaction enthalpies of a reacting chemical system made of two coupled reactions. The method is then extended to a cycle of three reactions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10953-023-01334-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10953-023-01334-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10953-023-01334-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Application of Mechanics to Chemistry: the Dynamic Behaviour of Coupled Chemical Reactions Compared to that of the Two-Body Oscillator
The dynamic behaviour of a chemical system made of two coupled reactions is compared with that of a mechanical system consisting of two oscillating bodies connected by springs. First, the principle of energy departure from equilibrium is employed to derive the motion equations of both systems. Subsequently, the relevant characteristic frequencies and the amplitude parameters are obtained and analysed in terms of “Normal Modes”. The results show that systems belonging to different branches of science can be analysed using the same methodologies. To elucidate the application of Normal Modes to chemistry, the dynamic analysis of a system consisting of a proton transfer reaction coupled to a complex formation reaction is described in the Supporting Information: the procedure enables the evaluation of rate constants, equilibrium constants and reaction enthalpies of a reacting chemical system made of two coupled reactions. The method is then extended to a cycle of three reactions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.