{"title":"高纬度北极地区三十年变化后啮齿类动物的增加","authors":"James A. Schaefer","doi":"10.33265/polar.v42.9560","DOIUrl":null,"url":null,"abstract":"<p>Climate change portends serious implications for Arctic vegetation. Understanding these effects is likely to be enhanced with long-term observations from permanent plots. I evaluated three decades of change in tundra vegetation from 80 permanent plots on south-eastern Victoria Island, Nunavut, Canada. I compared baseline (1991 and 1992) and contemporary (2019 and 2022) periods in the cover and frequency of graminoids, mosses and common species of forbs, shrubs and lichens. I found substantial shifts in cover of several species and growth forms—an increase in graminoids, decreases in <em>Dryas integrifolia, Polygonum viviparum</em> and <em>Saxifraga oppositifolia</em>, and marginally significant declines in mosses and <em>Cassiope tetragona</em>, but no detectable changes in other groups. The decline in <em>Dryas integrifolia</em> was more pronounced at lower elevations and was noticeable as patches of apparent mortality, inside the plots and elsewhere. The shifts in species abundance were not significantly correlated with each other, nor with changes in soil depth. These changes, manifest as communities with more abundant graminoids, are consistent with expected climate change effects in colder regions of the Arctic. Repeated observations of permanent plots can aid in detecting and understanding long-term ecological change.</p>","PeriodicalId":49684,"journal":{"name":"Polar Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increases in graminoids after three decades of change in the High Arctic\",\"authors\":\"James A. Schaefer\",\"doi\":\"10.33265/polar.v42.9560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change portends serious implications for Arctic vegetation. Understanding these effects is likely to be enhanced with long-term observations from permanent plots. I evaluated three decades of change in tundra vegetation from 80 permanent plots on south-eastern Victoria Island, Nunavut, Canada. I compared baseline (1991 and 1992) and contemporary (2019 and 2022) periods in the cover and frequency of graminoids, mosses and common species of forbs, shrubs and lichens. I found substantial shifts in cover of several species and growth forms—an increase in graminoids, decreases in <em>Dryas integrifolia, Polygonum viviparum</em> and <em>Saxifraga oppositifolia</em>, and marginally significant declines in mosses and <em>Cassiope tetragona</em>, but no detectable changes in other groups. The decline in <em>Dryas integrifolia</em> was more pronounced at lower elevations and was noticeable as patches of apparent mortality, inside the plots and elsewhere. The shifts in species abundance were not significantly correlated with each other, nor with changes in soil depth. These changes, manifest as communities with more abundant graminoids, are consistent with expected climate change effects in colder regions of the Arctic. Repeated observations of permanent plots can aid in detecting and understanding long-term ecological change.</p>\",\"PeriodicalId\":49684,\"journal\":{\"name\":\"Polar Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polar Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.33265/polar.v42.9560\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.33265/polar.v42.9560","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Increases in graminoids after three decades of change in the High Arctic
Climate change portends serious implications for Arctic vegetation. Understanding these effects is likely to be enhanced with long-term observations from permanent plots. I evaluated three decades of change in tundra vegetation from 80 permanent plots on south-eastern Victoria Island, Nunavut, Canada. I compared baseline (1991 and 1992) and contemporary (2019 and 2022) periods in the cover and frequency of graminoids, mosses and common species of forbs, shrubs and lichens. I found substantial shifts in cover of several species and growth forms—an increase in graminoids, decreases in Dryas integrifolia, Polygonum viviparum and Saxifraga oppositifolia, and marginally significant declines in mosses and Cassiope tetragona, but no detectable changes in other groups. The decline in Dryas integrifolia was more pronounced at lower elevations and was noticeable as patches of apparent mortality, inside the plots and elsewhere. The shifts in species abundance were not significantly correlated with each other, nor with changes in soil depth. These changes, manifest as communities with more abundant graminoids, are consistent with expected climate change effects in colder regions of the Arctic. Repeated observations of permanent plots can aid in detecting and understanding long-term ecological change.
期刊介绍:
Since 1982, Polar Research has been the international, peer-reviewed journal of the Norwegian Polar Institute, Norway''s central institution for research, environmental monitoring and mapping of the polar regions. Aiming to promote the exchange of scientific knowledge about the Arctic and Antarctic across disciplinary boundaries, Polar Research serves an international community of researchers and managers. As an open-access journal, Polar Research makes its contents freely available to the general public.
Original primary research papers comprise the mainstay of Polar Research. Review articles, brief research notes, letters to the editor and book reviews are also included. Special issues are published from time to time.
The scope of Polar Research encompasses research in all scientific disciplines relevant to the polar regions. These include, but are not limited to, the subfields of biology, ecology, geology, oceanography, glaciology and atmospheric science. Submissions from the social sciences and those focusing on polar management and policy issues are welcome. Contributions about Antarctica are particularly encouraged.