{"title":"MaxCLK:通过模块的最大聚类和信息熵发现癌症驱动基因","authors":"Jian Liu, Fubin Ma, Yongdi Zhu, Naiqian Zhang, Lingming Kong, Jia Mi, Haiyan Cong, Rui Gao, Mingyi Wang, Yusen Zhang","doi":"10.1093/bioinformatics/btad737","DOIUrl":null,"url":null,"abstract":"Motivation Cancer is caused by the accumulation of somatic mutations in multiple pathways, in which driver mutations are typically of the properties of high coverage and high exclusivity in patients. Identifying cancer driver genes has a pivotal role in understanding the mechanisms of oncogenesis and treatment. Results Here, we introduced MaxCLK, an algorithm for identifying cancer driver genes, which was developed by an integrated analysis of somatic mutation data and protein–protein interaction (PPI) networks and further improved by an information entropy (IE) index. Tested on pancancer and single cancers, MaxCLK outperformed other existing methods with higher accuracy. About pancancer, we predicted 154 driver genes and 787 driver modules. The analysis of co-occurrence and exclusivity between modules and pathways reveals the correlation of their combinations. Overall, our study has deepened the understanding of driver mechanism in PPI topology and found novel driver genes. Availability The source codes for MaxCLK are freely available at https://github.com/ShandongUniversityMasterMa/MaxCLK-main. Supplementary information Supplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"49 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MaxCLK: discovery of cancer driver genes via maximal clique and information entropy of modules\",\"authors\":\"Jian Liu, Fubin Ma, Yongdi Zhu, Naiqian Zhang, Lingming Kong, Jia Mi, Haiyan Cong, Rui Gao, Mingyi Wang, Yusen Zhang\",\"doi\":\"10.1093/bioinformatics/btad737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation Cancer is caused by the accumulation of somatic mutations in multiple pathways, in which driver mutations are typically of the properties of high coverage and high exclusivity in patients. Identifying cancer driver genes has a pivotal role in understanding the mechanisms of oncogenesis and treatment. Results Here, we introduced MaxCLK, an algorithm for identifying cancer driver genes, which was developed by an integrated analysis of somatic mutation data and protein–protein interaction (PPI) networks and further improved by an information entropy (IE) index. Tested on pancancer and single cancers, MaxCLK outperformed other existing methods with higher accuracy. About pancancer, we predicted 154 driver genes and 787 driver modules. The analysis of co-occurrence and exclusivity between modules and pathways reveals the correlation of their combinations. Overall, our study has deepened the understanding of driver mechanism in PPI topology and found novel driver genes. Availability The source codes for MaxCLK are freely available at https://github.com/ShandongUniversityMasterMa/MaxCLK-main. Supplementary information Supplementary data are available at Bioinformatics online.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btad737\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btad737","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MaxCLK: discovery of cancer driver genes via maximal clique and information entropy of modules
Motivation Cancer is caused by the accumulation of somatic mutations in multiple pathways, in which driver mutations are typically of the properties of high coverage and high exclusivity in patients. Identifying cancer driver genes has a pivotal role in understanding the mechanisms of oncogenesis and treatment. Results Here, we introduced MaxCLK, an algorithm for identifying cancer driver genes, which was developed by an integrated analysis of somatic mutation data and protein–protein interaction (PPI) networks and further improved by an information entropy (IE) index. Tested on pancancer and single cancers, MaxCLK outperformed other existing methods with higher accuracy. About pancancer, we predicted 154 driver genes and 787 driver modules. The analysis of co-occurrence and exclusivity between modules and pathways reveals the correlation of their combinations. Overall, our study has deepened the understanding of driver mechanism in PPI topology and found novel driver genes. Availability The source codes for MaxCLK are freely available at https://github.com/ShandongUniversityMasterMa/MaxCLK-main. Supplementary information Supplementary data are available at Bioinformatics online.
期刊介绍:
The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.