开放式量子系统对量子机器学习的益处

María Laura Olivera-Atencio, Lucas Lamata, Jesús Casado-Pascual
{"title":"开放式量子系统对量子机器学习的益处","authors":"María Laura Olivera-Atencio, Lucas Lamata, Jesús Casado-Pascual","doi":"10.1002/qute.202300247","DOIUrl":null,"url":null,"abstract":"Quantum machine learning (QML) is a discipline that holds the promise of revolutionizing data processing and problem-solving. However, dissipation and noise arising from the coupling with the environment are commonly perceived as major obstacles to its practical exploitation, as they impact the coherence and performance of the utilized quantum devices. Significant efforts have been dedicated to mitigating and controlling their negative effects on these devices. This perspective takes a different approach, aiming to harness the potential of noise and dissipation instead of combating them. Surprisingly, it is shown that these seemingly detrimental factors can provide substantial advantages in the operation of QML algorithms under certain circumstances. Exploring and understanding the implications of adapting QML algorithms to open quantum systems opens up pathways for devising strategies that effectively leverage noise and dissipation. The recent works analyzed in this perspective represent only initial steps toward uncovering other potential hidden benefits that dissipation and noise may offer. As exploration in this field continues, significant discoveries are anticipated that could reshape the future of quantum computing.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits of Open Quantum Systems for Quantum Machine Learning\",\"authors\":\"María Laura Olivera-Atencio, Lucas Lamata, Jesús Casado-Pascual\",\"doi\":\"10.1002/qute.202300247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum machine learning (QML) is a discipline that holds the promise of revolutionizing data processing and problem-solving. However, dissipation and noise arising from the coupling with the environment are commonly perceived as major obstacles to its practical exploitation, as they impact the coherence and performance of the utilized quantum devices. Significant efforts have been dedicated to mitigating and controlling their negative effects on these devices. This perspective takes a different approach, aiming to harness the potential of noise and dissipation instead of combating them. Surprisingly, it is shown that these seemingly detrimental factors can provide substantial advantages in the operation of QML algorithms under certain circumstances. Exploring and understanding the implications of adapting QML algorithms to open quantum systems opens up pathways for devising strategies that effectively leverage noise and dissipation. The recent works analyzed in this perspective represent only initial steps toward uncovering other potential hidden benefits that dissipation and noise may offer. As exploration in this field continues, significant discoveries are anticipated that could reshape the future of quantum computing.\",\"PeriodicalId\":501028,\"journal\":{\"name\":\"Advanced Quantum Technologies\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/qute.202300247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子机器学习(QML)是一门有望彻底改变数据处理和问题解决方式的学科。然而,与环境耦合产生的耗散和噪声通常被认为是其实际利用的主要障碍,因为它们会影响所使用量子设备的一致性和性能。人们一直致力于减轻和控制它们对这些器件的负面影响。本研究从另一个角度出发,旨在利用噪声和耗散的潜力,而不是与它们作斗争。令人惊讶的是,在某些情况下,这些看似有害的因素却能为 QML 算法的运行带来巨大优势。探索和理解 QML 算法对开放量子系统的影响,为设计有效利用噪声和耗散的策略开辟了道路。本视角中分析的最新研究成果只是揭示耗散和噪声可能带来的其他潜在隐性优势的第一步。随着这一领域探索的不断深入,预计将会有重大发现,重塑量子计算的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benefits of Open Quantum Systems for Quantum Machine Learning
Quantum machine learning (QML) is a discipline that holds the promise of revolutionizing data processing and problem-solving. However, dissipation and noise arising from the coupling with the environment are commonly perceived as major obstacles to its practical exploitation, as they impact the coherence and performance of the utilized quantum devices. Significant efforts have been dedicated to mitigating and controlling their negative effects on these devices. This perspective takes a different approach, aiming to harness the potential of noise and dissipation instead of combating them. Surprisingly, it is shown that these seemingly detrimental factors can provide substantial advantages in the operation of QML algorithms under certain circumstances. Exploring and understanding the implications of adapting QML algorithms to open quantum systems opens up pathways for devising strategies that effectively leverage noise and dissipation. The recent works analyzed in this perspective represent only initial steps toward uncovering other potential hidden benefits that dissipation and noise may offer. As exploration in this field continues, significant discoveries are anticipated that could reshape the future of quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing the Sensitivity of Quantum Fiber‐Optical Gyroscope via a Non‐Gaussian‐State Probe Implementation of Entanglement Witnesses with Quantum Circuits Quantum Effect Enables Large Elastocaloric Effect in Monolayer MoSi2N4${\rm MoSi}_2{\rm N}_4$ and Graphene Dynamic Phase Enabled Topological Mode Steering in Composite Su‐Schrieffer–Heeger Waveguide Arrays Variational Quantum Algorithm‐Preserving Feasible Space for Solving the Uncapacitated Facility Location Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1