E. V. Grigorieva, T. M. Astakhova, A. V. Burov, V. L. Karpov, A. V. Morozov
{"title":"硫化氢供体 GYY4137 对结直肠癌细胞蛋白酶体池的影响","authors":"E. V. Grigorieva, T. M. Astakhova, A. V. Burov, V. L. Karpov, A. V. Morozov","doi":"10.1134/s0026893323060079","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Cancer cells are characterized by an increased level of metabolism and are highly dependent on the correct functioning of the processes that ensure homeostasis. Reactive sulfur species (RSS) are important molecular modulators of metabolic processes in both healthy and tumor cells. The effect of RSS and, in particular, H<sub>2</sub>S, on key cellular systems, including the ubiquitin–proteasome system (UPS), which provides the destruction of most intracellular proteins, has been shown. The main components of the UPS are proteasomes, multisubunit protein complexes, within which proteolysis occurs. At the same time, data on the effect of H<sub>2</sub>S directly on the pool of proteasomes in tumor cells are insufficient. Here, we studied the effect of incubation of SW620B8-mCherry colorectal adenocarcinoma cells expressing a fluorescently labeled proteasome subunit with 50, 100, and 200 µM of the hydrogen sulfide donor GYY4137. The effect of the substance on the proteasome pool was assessed 6, 24, 48, and 72 h after administration. It was shown that the chymotrypsin-like and caspase-like proteasome activity decreases in cells incubated with 200 µM of the GYY4137 for 24 h. This coincided with an increase in the expression of proteasome subunit genes. In lysates of cells incubated with 200 µM GYY4137 for 48 h an increase in the content of the constitutive β5 subunit was observed and the activity of proteasomes leveled off. Following prolonged incubation with GYY4137 (72h), an increase in the expression levels of some proteasome genes was also observed, although this did not have a significant effect on the activity and subunit composition of proteasomes. Thus, the obtained data indicate the modulation of proteasome activity by the hydrogen sulfide donor and the effect of GYY4137 on transcription and translation of proteasome genes.</p>","PeriodicalId":18734,"journal":{"name":"Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of the Hydrogen Sulfide Donor GYY4137 on the Proteasome Pool of Colorectal Cancer Cells\",\"authors\":\"E. V. Grigorieva, T. M. Astakhova, A. V. Burov, V. L. Karpov, A. V. Morozov\",\"doi\":\"10.1134/s0026893323060079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—Cancer cells are characterized by an increased level of metabolism and are highly dependent on the correct functioning of the processes that ensure homeostasis. Reactive sulfur species (RSS) are important molecular modulators of metabolic processes in both healthy and tumor cells. The effect of RSS and, in particular, H<sub>2</sub>S, on key cellular systems, including the ubiquitin–proteasome system (UPS), which provides the destruction of most intracellular proteins, has been shown. The main components of the UPS are proteasomes, multisubunit protein complexes, within which proteolysis occurs. At the same time, data on the effect of H<sub>2</sub>S directly on the pool of proteasomes in tumor cells are insufficient. Here, we studied the effect of incubation of SW620B8-mCherry colorectal adenocarcinoma cells expressing a fluorescently labeled proteasome subunit with 50, 100, and 200 µM of the hydrogen sulfide donor GYY4137. The effect of the substance on the proteasome pool was assessed 6, 24, 48, and 72 h after administration. It was shown that the chymotrypsin-like and caspase-like proteasome activity decreases in cells incubated with 200 µM of the GYY4137 for 24 h. This coincided with an increase in the expression of proteasome subunit genes. In lysates of cells incubated with 200 µM GYY4137 for 48 h an increase in the content of the constitutive β5 subunit was observed and the activity of proteasomes leveled off. Following prolonged incubation with GYY4137 (72h), an increase in the expression levels of some proteasome genes was also observed, although this did not have a significant effect on the activity and subunit composition of proteasomes. Thus, the obtained data indicate the modulation of proteasome activity by the hydrogen sulfide donor and the effect of GYY4137 on transcription and translation of proteasome genes.</p>\",\"PeriodicalId\":18734,\"journal\":{\"name\":\"Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s0026893323060079\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026893323060079","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Effects of the Hydrogen Sulfide Donor GYY4137 on the Proteasome Pool of Colorectal Cancer Cells
Abstract—Cancer cells are characterized by an increased level of metabolism and are highly dependent on the correct functioning of the processes that ensure homeostasis. Reactive sulfur species (RSS) are important molecular modulators of metabolic processes in both healthy and tumor cells. The effect of RSS and, in particular, H2S, on key cellular systems, including the ubiquitin–proteasome system (UPS), which provides the destruction of most intracellular proteins, has been shown. The main components of the UPS are proteasomes, multisubunit protein complexes, within which proteolysis occurs. At the same time, data on the effect of H2S directly on the pool of proteasomes in tumor cells are insufficient. Here, we studied the effect of incubation of SW620B8-mCherry colorectal adenocarcinoma cells expressing a fluorescently labeled proteasome subunit with 50, 100, and 200 µM of the hydrogen sulfide donor GYY4137. The effect of the substance on the proteasome pool was assessed 6, 24, 48, and 72 h after administration. It was shown that the chymotrypsin-like and caspase-like proteasome activity decreases in cells incubated with 200 µM of the GYY4137 for 24 h. This coincided with an increase in the expression of proteasome subunit genes. In lysates of cells incubated with 200 µM GYY4137 for 48 h an increase in the content of the constitutive β5 subunit was observed and the activity of proteasomes leveled off. Following prolonged incubation with GYY4137 (72h), an increase in the expression levels of some proteasome genes was also observed, although this did not have a significant effect on the activity and subunit composition of proteasomes. Thus, the obtained data indicate the modulation of proteasome activity by the hydrogen sulfide donor and the effect of GYY4137 on transcription and translation of proteasome genes.
期刊介绍:
Molecular Biology is an international peer reviewed journal that covers a wide scope of problems in molecular, cell and computational biology including genomics, proteomics, bioinformatics, molecular virology and immunology, molecular development biology, molecular evolution and related areals. Molecular Biology publishes reviews, experimental and theoretical works. Every year, the journal publishes special issues devoted to most rapidly developing branches of physical-chemical biology and to the most outstanding scientists.