{"title":"用于二维动态裂纹分析的广义有限差分法","authors":"Bingrui Ju , Boyang Yu , Zhiyuan Zhou","doi":"10.1016/j.rinam.2023.100418","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new framework for efficient and accurate analysis of transient elastodynamic cracks by using the generalized finite difference method (GFDM). The method first discretizes the solution domain into a set of overlapping small subdomains, and then in each of the subdomains, the unknown functions and their derivatives are approximated by using the local Taylor series expansions and moving-least square approximation. The degree of the Taylor series used in the local subdomain is increased automatically in the regions near the crack-tips, in order to appropriately describe the local asymptotic behavior of near-tip displacement and stress fields. The path-independent J-integral and sub-domain technique are adopted to compute the dynamic stress intensity factors (SIFs) of the cracked bodies. Preliminary numerical experiments for dynamic SIFs with both uniform and variable loading conditions are given to show the efficient and accuracy of the present method for transient elastodynamic crack analysis.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"21 ","pages":"Article 100418"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742300064X/pdfft?md5=fd874dbd9bfe995f3593f0c039d8b701&pid=1-s2.0-S259003742300064X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A generalized finite difference method for 2D dynamic crack analysis\",\"authors\":\"Bingrui Ju , Boyang Yu , Zhiyuan Zhou\",\"doi\":\"10.1016/j.rinam.2023.100418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a new framework for efficient and accurate analysis of transient elastodynamic cracks by using the generalized finite difference method (GFDM). The method first discretizes the solution domain into a set of overlapping small subdomains, and then in each of the subdomains, the unknown functions and their derivatives are approximated by using the local Taylor series expansions and moving-least square approximation. The degree of the Taylor series used in the local subdomain is increased automatically in the regions near the crack-tips, in order to appropriately describe the local asymptotic behavior of near-tip displacement and stress fields. The path-independent J-integral and sub-domain technique are adopted to compute the dynamic stress intensity factors (SIFs) of the cracked bodies. Preliminary numerical experiments for dynamic SIFs with both uniform and variable loading conditions are given to show the efficient and accuracy of the present method for transient elastodynamic crack analysis.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"21 \",\"pages\":\"Article 100418\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259003742300064X/pdfft?md5=fd874dbd9bfe995f3593f0c039d8b701&pid=1-s2.0-S259003742300064X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259003742300064X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742300064X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A generalized finite difference method for 2D dynamic crack analysis
This paper presents a new framework for efficient and accurate analysis of transient elastodynamic cracks by using the generalized finite difference method (GFDM). The method first discretizes the solution domain into a set of overlapping small subdomains, and then in each of the subdomains, the unknown functions and their derivatives are approximated by using the local Taylor series expansions and moving-least square approximation. The degree of the Taylor series used in the local subdomain is increased automatically in the regions near the crack-tips, in order to appropriately describe the local asymptotic behavior of near-tip displacement and stress fields. The path-independent J-integral and sub-domain technique are adopted to compute the dynamic stress intensity factors (SIFs) of the cracked bodies. Preliminary numerical experiments for dynamic SIFs with both uniform and variable loading conditions are given to show the efficient and accuracy of the present method for transient elastodynamic crack analysis.