超越情感:在大型文本库中识别评价的算法策略

IF 6.3 1区 文学 Q1 COMMUNICATION Communication Methods and Measures Pub Date : 2023-12-07 DOI:10.1080/19312458.2023.2285783
Maximilian Overbeck, Christian Baden, Tali Aharoni, Eedan Amit-Danhi, Keren Tenenboim-Weinblatt
{"title":"超越情感:在大型文本库中识别评价的算法策略","authors":"Maximilian Overbeck, Christian Baden, Tali Aharoni, Eedan Amit-Danhi, Keren Tenenboim-Weinblatt","doi":"10.1080/19312458.2023.2285783","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new strategy for classifying evaluations in large text corpora, using supervised machine learning (SML). Departing from a conceptual and methodological critique of the u...","PeriodicalId":47552,"journal":{"name":"Communication Methods and Measures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Beyond sentiment: an algorithmic strategy for identifying evaluations within large text corpora\",\"authors\":\"Maximilian Overbeck, Christian Baden, Tali Aharoni, Eedan Amit-Danhi, Keren Tenenboim-Weinblatt\",\"doi\":\"10.1080/19312458.2023.2285783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new strategy for classifying evaluations in large text corpora, using supervised machine learning (SML). Departing from a conceptual and methodological critique of the u...\",\"PeriodicalId\":47552,\"journal\":{\"name\":\"Communication Methods and Measures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communication Methods and Measures\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1080/19312458.2023.2285783\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication Methods and Measures","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1080/19312458.2023.2285783","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种使用监督机器学习(SML)对大型文本库中的评价进行分类的新策略。我们从概念和方法论角度出发,对使用监督机器学习(SML)的评价方法进行了批判。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond sentiment: an algorithmic strategy for identifying evaluations within large text corpora
In this paper, we propose a new strategy for classifying evaluations in large text corpora, using supervised machine learning (SML). Departing from a conceptual and methodological critique of the u...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.10
自引率
1.80%
发文量
9
期刊介绍: Communication Methods and Measures aims to achieve several goals in the field of communication research. Firstly, it aims to bring attention to and showcase developments in both qualitative and quantitative research methodologies to communication scholars. This journal serves as a platform for researchers across the field to discuss and disseminate methodological tools and approaches. Additionally, Communication Methods and Measures seeks to improve research design and analysis practices by offering suggestions for improvement. It aims to introduce new methods of measurement that are valuable to communication scientists or enhance existing methods. The journal encourages submissions that focus on methods for enhancing research design and theory testing, employing both quantitative and qualitative approaches. Furthermore, the journal is open to articles devoted to exploring the epistemological aspects relevant to communication research methodologies. It welcomes well-written manuscripts that demonstrate the use of methods and articles that highlight the advantages of lesser-known or newer methods over those traditionally used in communication. In summary, Communication Methods and Measures strives to advance the field of communication research by showcasing and discussing innovative methodologies, improving research practices, and introducing new measurement methods.
期刊最新文献
JST and rJST: joint estimation of sentiment and topics in textual data using a semi-supervised approach Using State Space Grids to Quantify and Examine Dynamics of Dyadic Conversation Bootstrapping public entities. Domain-specific NER for public speakers On Measurement Validity and Language Models: Increasing Validity and Decreasing Bias with Instructions Googling Politics? Comparing Five Computational Methods to Identify Political and News-related Searches from Web Browser Histories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1