Marten Maack, Friedhelm Meyer auf der Heide, Simon Pukrop
{"title":"服务器云调度","authors":"Marten Maack, Friedhelm Meyer auf der Heide, Simon Pukrop","doi":"10.1007/s00453-023-01189-x","DOIUrl":null,"url":null,"abstract":"<div><p>Consider a set of jobs connected to a directed acyclic task graph with a fixed source and sink. The edges of this graph model precedence constraints and the jobs have to be scheduled with respect to those. We introduce the server cloud scheduling problem, in which the jobs have to be processed either on a single local machine or on one of infinitely many cloud machines. For each job, processing times both on the server and in the cloud are given. Furthermore, for each edge in the task graph, a communication delay is included in the input and has to be taken into account if one of the two jobs is scheduled on the server and the other in the cloud. The server processes jobs sequentially, whereas the cloud can serve as many as needed in parallel, but induces costs. We consider both makespan and cost minimization. The main results are an FPTAS for the makespan objective for graphs with a constant source and sink dividing cut and strong hardness for the case with unit processing times and delays.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 4","pages":"1210 - 1245"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-023-01189-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Server Cloud Scheduling\",\"authors\":\"Marten Maack, Friedhelm Meyer auf der Heide, Simon Pukrop\",\"doi\":\"10.1007/s00453-023-01189-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider a set of jobs connected to a directed acyclic task graph with a fixed source and sink. The edges of this graph model precedence constraints and the jobs have to be scheduled with respect to those. We introduce the server cloud scheduling problem, in which the jobs have to be processed either on a single local machine or on one of infinitely many cloud machines. For each job, processing times both on the server and in the cloud are given. Furthermore, for each edge in the task graph, a communication delay is included in the input and has to be taken into account if one of the two jobs is scheduled on the server and the other in the cloud. The server processes jobs sequentially, whereas the cloud can serve as many as needed in parallel, but induces costs. We consider both makespan and cost minimization. The main results are an FPTAS for the makespan objective for graphs with a constant source and sink dividing cut and strong hardness for the case with unit processing times and delays.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"86 4\",\"pages\":\"1210 - 1245\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00453-023-01189-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-023-01189-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-023-01189-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Consider a set of jobs connected to a directed acyclic task graph with a fixed source and sink. The edges of this graph model precedence constraints and the jobs have to be scheduled with respect to those. We introduce the server cloud scheduling problem, in which the jobs have to be processed either on a single local machine or on one of infinitely many cloud machines. For each job, processing times both on the server and in the cloud are given. Furthermore, for each edge in the task graph, a communication delay is included in the input and has to be taken into account if one of the two jobs is scheduled on the server and the other in the cloud. The server processes jobs sequentially, whereas the cloud can serve as many as needed in parallel, but induces costs. We consider both makespan and cost minimization. The main results are an FPTAS for the makespan objective for graphs with a constant source and sink dividing cut and strong hardness for the case with unit processing times and delays.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.