{"title":"中国东北通江-抚远中生代岩浆岩的锆石U-Pb年代学、地球化学及其地质意义","authors":"Tao Chen, Weimin Li, Yongjiang Liu, Zhiqiang Feng, Yingli Zhao, Tongjun Liu, Jinhui Gao, Shigang Zheng, Junfeng Zhao","doi":"10.1017/s0016756823000675","DOIUrl":null,"url":null,"abstract":"<p>Typical ophiolitic rock assemblages such as siliciclastic rocks, basalts and gabbros, together with the subduction-related intermediate-acidic intrusive rocks, are newly discovered in the Tongjiang-Fuyuan area of the Heilongjiang Provence, NE China. To determine the formation age and genesis of the mafic rocks (basalts and gabbros) and intermediate-acidic intrusive rocks (granodiorites) in the area, as well as their geodynamic settings, the whole-rock geochemical analysis and zircon LA-ICP-MS U-Pb dating were carried out. Zircon U-Pb results suggest that the granodiorites are 93–95 Ma and gabbro is 95 Ma, respectively. Geochemical results show that the gabbros and basalts exhibit characteristics of ocean island basalt (OIB) affinity and are typically related to having originated from mantle plumes. While the granodiorites show the nature of the island-arc magmatic rocks and may originate from the lower crust. Based on the coeval igneous rock associations and regional tectonic evolution, we conclude that the late Cretaceous magmatic rocks in the Tongjiang-Fuyuan area are the product of continuous subduction of the Palaeo-Pacific plate and reflect the subduction rollback process of the Palaeo-Pacific plate.</p>","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zircon U-Pb chronology, geochemistry and geological significance of the Tongjiang-Fuyuan Mesozoic magmatic rocks, NE China\",\"authors\":\"Tao Chen, Weimin Li, Yongjiang Liu, Zhiqiang Feng, Yingli Zhao, Tongjun Liu, Jinhui Gao, Shigang Zheng, Junfeng Zhao\",\"doi\":\"10.1017/s0016756823000675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Typical ophiolitic rock assemblages such as siliciclastic rocks, basalts and gabbros, together with the subduction-related intermediate-acidic intrusive rocks, are newly discovered in the Tongjiang-Fuyuan area of the Heilongjiang Provence, NE China. To determine the formation age and genesis of the mafic rocks (basalts and gabbros) and intermediate-acidic intrusive rocks (granodiorites) in the area, as well as their geodynamic settings, the whole-rock geochemical analysis and zircon LA-ICP-MS U-Pb dating were carried out. Zircon U-Pb results suggest that the granodiorites are 93–95 Ma and gabbro is 95 Ma, respectively. Geochemical results show that the gabbros and basalts exhibit characteristics of ocean island basalt (OIB) affinity and are typically related to having originated from mantle plumes. While the granodiorites show the nature of the island-arc magmatic rocks and may originate from the lower crust. Based on the coeval igneous rock associations and regional tectonic evolution, we conclude that the late Cretaceous magmatic rocks in the Tongjiang-Fuyuan area are the product of continuous subduction of the Palaeo-Pacific plate and reflect the subduction rollback process of the Palaeo-Pacific plate.</p>\",\"PeriodicalId\":12612,\"journal\":{\"name\":\"Geological Magazine\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/s0016756823000675\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/s0016756823000675","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Zircon U-Pb chronology, geochemistry and geological significance of the Tongjiang-Fuyuan Mesozoic magmatic rocks, NE China
Typical ophiolitic rock assemblages such as siliciclastic rocks, basalts and gabbros, together with the subduction-related intermediate-acidic intrusive rocks, are newly discovered in the Tongjiang-Fuyuan area of the Heilongjiang Provence, NE China. To determine the formation age and genesis of the mafic rocks (basalts and gabbros) and intermediate-acidic intrusive rocks (granodiorites) in the area, as well as their geodynamic settings, the whole-rock geochemical analysis and zircon LA-ICP-MS U-Pb dating were carried out. Zircon U-Pb results suggest that the granodiorites are 93–95 Ma and gabbro is 95 Ma, respectively. Geochemical results show that the gabbros and basalts exhibit characteristics of ocean island basalt (OIB) affinity and are typically related to having originated from mantle plumes. While the granodiorites show the nature of the island-arc magmatic rocks and may originate from the lower crust. Based on the coeval igneous rock associations and regional tectonic evolution, we conclude that the late Cretaceous magmatic rocks in the Tongjiang-Fuyuan area are the product of continuous subduction of the Palaeo-Pacific plate and reflect the subduction rollback process of the Palaeo-Pacific plate.
期刊介绍:
Geological Magazine, established in 1864, is one of the oldest and best-known periodicals in earth sciences. It publishes original scientific papers covering the complete spectrum of geological topics, with high quality illustrations. Its worldwide circulation and high production values, combined with Rapid Communications and Book Review sections keep the journal at the forefront of the field.
This journal is included in the Cambridge Journals open access initiative, Cambridge Open Option.