Michelle Chen BA , Maria Gerges BS , William Y. Raynor MD , Peter Sang Uk Park BA , Edward Nguyen MD , David H. Chan MD , Ali Gholamrezanezhad MD
{"title":"骨质疏松症的最新成像技术","authors":"Michelle Chen BA , Maria Gerges BS , William Y. Raynor MD , Peter Sang Uk Park BA , Edward Nguyen MD , David H. Chan MD , Ali Gholamrezanezhad MD","doi":"10.1053/j.semnuclmed.2023.10.008","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Osteoporosis is a common disease, particularly prevalent in </span>geriatric<span> populations, which causes significant worldwide morbidity due to increased bone fragility and fracture risk. Currently, the gold-standard modality for diagnosis and evaluation of osteoporosis progression and treatment relies on dual-energy x-ray </span></span>absorptiometry<span> (DXA), which measures bone mineral density (BMD) and calculates a score based upon standard deviation of measured BMD from the mean. However, other imaging modalities can also be used to evaluate osteoporosis. Here, we review historical as well as current research into development of new imaging modalities that can provide more nuanced or opportunistic analyses of bone quality, turnover, and density that can be helpful in triaging severity and determining treatment success in osteoporosis. We discuss the use of opportunistic computed tomography (CT) scans, as well as the use of quantitative CT<span><span> to help determine fracture risk and perform more detailed bone quality analysis than would be allowed by DXA . Within magnetic resonance imaging (MRI), new developments include the use of advanced MRI techniques such as </span>quantitative susceptibility mapping<span><span> (QSM), magnetic resonance spectroscopy<span>, and chemical shift encoding-based water-fat MRI (CSE-MRI) to enable clinicians improved assessment of nonmineralized bone compartments as well as a way to longitudinally assess bone quality without the repeated exposure to </span></span>ionizing radiation<span>. Within ultrasound, development of quantitative ultrasound shows promise particularly in future low-cost, broadly available screening tools. We focus primarily on historical and recent developments within radiotracer use as applicable to osteoporosis, particularly in the use of hybrid methods such as NaF-PET/CT, wherein patients with osteoporosis show reduced uptake of radiotracers such as NaF. Use of radiotracers may provide clinicians with even earlier detection windows for osteoporosis than would traditional biomarkers. Given the metabolic nature of this disease, current investigation into the role </span></span></span></span></span>molecular imaging<span> can play in the prediction of this disease as well as in replacing invasive diagnostic procedures shows particular promise.</span></p></div>","PeriodicalId":21643,"journal":{"name":"Seminars in nuclear medicine","volume":"54 3","pages":"Pages 415-426"},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of the Art Imaging of Osteoporosis\",\"authors\":\"Michelle Chen BA , Maria Gerges BS , William Y. Raynor MD , Peter Sang Uk Park BA , Edward Nguyen MD , David H. Chan MD , Ali Gholamrezanezhad MD\",\"doi\":\"10.1053/j.semnuclmed.2023.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Osteoporosis is a common disease, particularly prevalent in </span>geriatric<span> populations, which causes significant worldwide morbidity due to increased bone fragility and fracture risk. Currently, the gold-standard modality for diagnosis and evaluation of osteoporosis progression and treatment relies on dual-energy x-ray </span></span>absorptiometry<span> (DXA), which measures bone mineral density (BMD) and calculates a score based upon standard deviation of measured BMD from the mean. However, other imaging modalities can also be used to evaluate osteoporosis. Here, we review historical as well as current research into development of new imaging modalities that can provide more nuanced or opportunistic analyses of bone quality, turnover, and density that can be helpful in triaging severity and determining treatment success in osteoporosis. We discuss the use of opportunistic computed tomography (CT) scans, as well as the use of quantitative CT<span><span> to help determine fracture risk and perform more detailed bone quality analysis than would be allowed by DXA . Within magnetic resonance imaging (MRI), new developments include the use of advanced MRI techniques such as </span>quantitative susceptibility mapping<span><span> (QSM), magnetic resonance spectroscopy<span>, and chemical shift encoding-based water-fat MRI (CSE-MRI) to enable clinicians improved assessment of nonmineralized bone compartments as well as a way to longitudinally assess bone quality without the repeated exposure to </span></span>ionizing radiation<span>. Within ultrasound, development of quantitative ultrasound shows promise particularly in future low-cost, broadly available screening tools. We focus primarily on historical and recent developments within radiotracer use as applicable to osteoporosis, particularly in the use of hybrid methods such as NaF-PET/CT, wherein patients with osteoporosis show reduced uptake of radiotracers such as NaF. Use of radiotracers may provide clinicians with even earlier detection windows for osteoporosis than would traditional biomarkers. Given the metabolic nature of this disease, current investigation into the role </span></span></span></span></span>molecular imaging<span> can play in the prediction of this disease as well as in replacing invasive diagnostic procedures shows particular promise.</span></p></div>\",\"PeriodicalId\":21643,\"journal\":{\"name\":\"Seminars in nuclear medicine\",\"volume\":\"54 3\",\"pages\":\"Pages 415-426\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in nuclear medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001299823000892\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001299823000892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Osteoporosis is a common disease, particularly prevalent in geriatric populations, which causes significant worldwide morbidity due to increased bone fragility and fracture risk. Currently, the gold-standard modality for diagnosis and evaluation of osteoporosis progression and treatment relies on dual-energy x-ray absorptiometry (DXA), which measures bone mineral density (BMD) and calculates a score based upon standard deviation of measured BMD from the mean. However, other imaging modalities can also be used to evaluate osteoporosis. Here, we review historical as well as current research into development of new imaging modalities that can provide more nuanced or opportunistic analyses of bone quality, turnover, and density that can be helpful in triaging severity and determining treatment success in osteoporosis. We discuss the use of opportunistic computed tomography (CT) scans, as well as the use of quantitative CT to help determine fracture risk and perform more detailed bone quality analysis than would be allowed by DXA . Within magnetic resonance imaging (MRI), new developments include the use of advanced MRI techniques such as quantitative susceptibility mapping (QSM), magnetic resonance spectroscopy, and chemical shift encoding-based water-fat MRI (CSE-MRI) to enable clinicians improved assessment of nonmineralized bone compartments as well as a way to longitudinally assess bone quality without the repeated exposure to ionizing radiation. Within ultrasound, development of quantitative ultrasound shows promise particularly in future low-cost, broadly available screening tools. We focus primarily on historical and recent developments within radiotracer use as applicable to osteoporosis, particularly in the use of hybrid methods such as NaF-PET/CT, wherein patients with osteoporosis show reduced uptake of radiotracers such as NaF. Use of radiotracers may provide clinicians with even earlier detection windows for osteoporosis than would traditional biomarkers. Given the metabolic nature of this disease, current investigation into the role molecular imaging can play in the prediction of this disease as well as in replacing invasive diagnostic procedures shows particular promise.
期刊介绍:
Seminars in Nuclear Medicine is the leading review journal in nuclear medicine. Each issue brings you expert reviews and commentary on a single topic as selected by the Editors. The journal contains extensive coverage of the field of nuclear medicine, including PET, SPECT, and other molecular imaging studies, and related imaging studies. Full-color illustrations are used throughout to highlight important findings. Seminars is included in PubMed/Medline, Thomson/ISI, and other major scientific indexes.