{"title":"被动标量传输中反常耗散的微观表达","authors":"Tomonori Tsuruhashi, Tsuyoshi Yoneda","doi":"10.1007/s00021-023-00834-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study anomalous dissipation from a microscopic viewpoint. In the work by Drivas et al. (Arch Ration Mech Anal 243(3):1151–1180, 2022), the property of anomalous dissipation provides the existence of non-unique weak solutions for a transport equation with a singular velocity field. In this paper, we reconsider this solution in terms of kinetic theory and clarify its microscopic property. Consequently, energy loss can be expressed by non-vanishing microscopic obstruction.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Expression of Anomalous Dissipation in Passive Scalar Transport\",\"authors\":\"Tomonori Tsuruhashi, Tsuyoshi Yoneda\",\"doi\":\"10.1007/s00021-023-00834-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study anomalous dissipation from a microscopic viewpoint. In the work by Drivas et al. (Arch Ration Mech Anal 243(3):1151–1180, 2022), the property of anomalous dissipation provides the existence of non-unique weak solutions for a transport equation with a singular velocity field. In this paper, we reconsider this solution in terms of kinetic theory and clarify its microscopic property. Consequently, energy loss can be expressed by non-vanishing microscopic obstruction.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-023-00834-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00834-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Microscopic Expression of Anomalous Dissipation in Passive Scalar Transport
We study anomalous dissipation from a microscopic viewpoint. In the work by Drivas et al. (Arch Ration Mech Anal 243(3):1151–1180, 2022), the property of anomalous dissipation provides the existence of non-unique weak solutions for a transport equation with a singular velocity field. In this paper, we reconsider this solution in terms of kinetic theory and clarify its microscopic property. Consequently, energy loss can be expressed by non-vanishing microscopic obstruction.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.