{"title":"研究肠道微生物源肽的功能空间","authors":"Ying-Chiang J. Lee","doi":"10.1002/mbo3.1393","DOIUrl":null,"url":null,"abstract":"<p>The human gut microbiome contains thousands of small, novel peptides that could play a role in microbe–microbe and host–microbe interactions, contributing to human health and disease. Although these peptides have not yet been systematically characterized, computational tools can be used to elucidate the bioactivities they may have. This article proposes probing the functional space of gut microbiome-derived peptides (MDPs) using in silico approaches for three bioactivities: antimicrobial, anticancer, and nucleomodulins. Machine learning programs that support peptide and protein queries are provided for each bioactivity. Considering the biases of an activity-centric approach, activity-agnostic tools using structural and chemical similarity and target prediction are also described. Gut MDPs represent a vast functional space that can not only contribute to our understanding of microbiome interactions but potentially even serve as a source of life-changing therapeutics.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1393","citationCount":"0","resultStr":"{\"title\":\"Examining the functional space of gut microbiome-derived peptides\",\"authors\":\"Ying-Chiang J. Lee\",\"doi\":\"10.1002/mbo3.1393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The human gut microbiome contains thousands of small, novel peptides that could play a role in microbe–microbe and host–microbe interactions, contributing to human health and disease. Although these peptides have not yet been systematically characterized, computational tools can be used to elucidate the bioactivities they may have. This article proposes probing the functional space of gut microbiome-derived peptides (MDPs) using in silico approaches for three bioactivities: antimicrobial, anticancer, and nucleomodulins. Machine learning programs that support peptide and protein queries are provided for each bioactivity. Considering the biases of an activity-centric approach, activity-agnostic tools using structural and chemical similarity and target prediction are also described. Gut MDPs represent a vast functional space that can not only contribute to our understanding of microbiome interactions but potentially even serve as a source of life-changing therapeutics.</p>\",\"PeriodicalId\":18573,\"journal\":{\"name\":\"MicrobiologyOpen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1393\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MicrobiologyOpen\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1393\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1393","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Examining the functional space of gut microbiome-derived peptides
The human gut microbiome contains thousands of small, novel peptides that could play a role in microbe–microbe and host–microbe interactions, contributing to human health and disease. Although these peptides have not yet been systematically characterized, computational tools can be used to elucidate the bioactivities they may have. This article proposes probing the functional space of gut microbiome-derived peptides (MDPs) using in silico approaches for three bioactivities: antimicrobial, anticancer, and nucleomodulins. Machine learning programs that support peptide and protein queries are provided for each bioactivity. Considering the biases of an activity-centric approach, activity-agnostic tools using structural and chemical similarity and target prediction are also described. Gut MDPs represent a vast functional space that can not only contribute to our understanding of microbiome interactions but potentially even serve as a source of life-changing therapeutics.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.