基于多特征表示和周期性部件时间建模的步态识别

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2023-12-11 DOI:10.1007/s40747-023-01293-z
Zhenni Li, Shiqiang Li, Dong Xiao, Zhengmin Gu, Yue Yu
{"title":"基于多特征表示和周期性部件时间建模的步态识别","authors":"Zhenni Li, Shiqiang Li, Dong Xiao, Zhengmin Gu, Yue Yu","doi":"10.1007/s40747-023-01293-z","DOIUrl":null,"url":null,"abstract":"<p>Despite the ability of 3D convolutional methods to extract spatio-temporal information simultaneously, they also increase parameter redundancy and computational and storage costs. Previous work that has utilized the 2D convolution method has approached the problem in one of two ways: either using the entire body sequence as input to extract global features or dividing the body sequence into several parts to extract local features. However, global information tends to overlook detailed information specific to each body part, while local information fails to capture relationships between local regions. Therefore, this study proposes a new framework for constructing spatio-temporal representations, which involves extracting and fusing features in a novel manner. To achieve this, we introduce the multi-feature extraction-fusion (MFEF) module, which includes two branches: each branch extracts global features or local features individually, after which they are fused using multiple strategies. Additionally, as gait is a periodic action and different body parts contribute unequally to recognition during each cycle, we propose the periodic temporal feature modeling (PTFM) module, which extracts temporal features from adjacent frame parts during the complete gait cycle, based on the fused features. Furthermore, to capture fine-grained information specific to each body part, our framework utilizes multiple parallel PTFMs to correspond with each body part. We conducted a comprehensive experimental study on the widely used public dataset CASIA-B. Results indicate that the proposed approach achieved an average rank-1 accuracy of 97.2% in normal walking conditions, 92.3% while carrying a bag during walking, and 80.5% while wearing a jacket during walking.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gait recognition based on multi-feature representation and temporal modeling of periodic parts\",\"authors\":\"Zhenni Li, Shiqiang Li, Dong Xiao, Zhengmin Gu, Yue Yu\",\"doi\":\"10.1007/s40747-023-01293-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the ability of 3D convolutional methods to extract spatio-temporal information simultaneously, they also increase parameter redundancy and computational and storage costs. Previous work that has utilized the 2D convolution method has approached the problem in one of two ways: either using the entire body sequence as input to extract global features or dividing the body sequence into several parts to extract local features. However, global information tends to overlook detailed information specific to each body part, while local information fails to capture relationships between local regions. Therefore, this study proposes a new framework for constructing spatio-temporal representations, which involves extracting and fusing features in a novel manner. To achieve this, we introduce the multi-feature extraction-fusion (MFEF) module, which includes two branches: each branch extracts global features or local features individually, after which they are fused using multiple strategies. Additionally, as gait is a periodic action and different body parts contribute unequally to recognition during each cycle, we propose the periodic temporal feature modeling (PTFM) module, which extracts temporal features from adjacent frame parts during the complete gait cycle, based on the fused features. Furthermore, to capture fine-grained information specific to each body part, our framework utilizes multiple parallel PTFMs to correspond with each body part. We conducted a comprehensive experimental study on the widely used public dataset CASIA-B. Results indicate that the proposed approach achieved an average rank-1 accuracy of 97.2% in normal walking conditions, 92.3% while carrying a bag during walking, and 80.5% while wearing a jacket during walking.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01293-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01293-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

尽管三维卷积方法能够同时提取时空信息,但也增加了参数冗余、计算和存储成本。以往利用二维卷积法解决这一问题的方法有两种:一种是将整个身体序列作为输入来提取全局特征,另一种是将身体序列分成几个部分来提取局部特征。然而,全局信息往往会忽略身体各部分特有的详细信息,而局部信息则无法捕捉局部区域之间的关系。因此,本研究提出了构建时空表征的新框架,其中涉及以一种新颖的方式提取和融合特征。为此,我们引入了多特征提取-融合(MFEF)模块,该模块包括两个分支:每个分支分别提取全局特征或局部特征,然后使用多种策略将其融合。此外,由于步态是一个周期性动作,而不同的身体部位在每个周期中对识别的贡献是不等的,因此我们提出了周期性时间特征建模(PTFM)模块,该模块根据融合后的特征,提取完整步态周期中相邻帧部位的时间特征。此外,为了捕捉每个身体部位特有的细粒度信息,我们的框架利用多个并行 PTFM 来对应每个身体部位。我们在广泛使用的公共数据集 CASIA-B 上进行了全面的实验研究。结果表明,所提出的方法在正常行走条件下的平均秩-1准确率为 97.2%,在行走过程中背着包时的准确率为 92.3%,在行走过程中穿着外套时的准确率为 80.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gait recognition based on multi-feature representation and temporal modeling of periodic parts

Despite the ability of 3D convolutional methods to extract spatio-temporal information simultaneously, they also increase parameter redundancy and computational and storage costs. Previous work that has utilized the 2D convolution method has approached the problem in one of two ways: either using the entire body sequence as input to extract global features or dividing the body sequence into several parts to extract local features. However, global information tends to overlook detailed information specific to each body part, while local information fails to capture relationships between local regions. Therefore, this study proposes a new framework for constructing spatio-temporal representations, which involves extracting and fusing features in a novel manner. To achieve this, we introduce the multi-feature extraction-fusion (MFEF) module, which includes two branches: each branch extracts global features or local features individually, after which they are fused using multiple strategies. Additionally, as gait is a periodic action and different body parts contribute unequally to recognition during each cycle, we propose the periodic temporal feature modeling (PTFM) module, which extracts temporal features from adjacent frame parts during the complete gait cycle, based on the fused features. Furthermore, to capture fine-grained information specific to each body part, our framework utilizes multiple parallel PTFMs to correspond with each body part. We conducted a comprehensive experimental study on the widely used public dataset CASIA-B. Results indicate that the proposed approach achieved an average rank-1 accuracy of 97.2% in normal walking conditions, 92.3% while carrying a bag during walking, and 80.5% while wearing a jacket during walking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Large-scale multiobjective competitive swarm optimizer algorithm based on regional multidirectional search Towards fairness-aware multi-objective optimization Low-frequency spectral graph convolution networks with one-hop connections information for personalized tag recommendation A decentralized feedback-based consensus model considering the consistency maintenance and readability of probabilistic linguistic preference relations for large-scale group decision-making A dynamic preference recommendation model based on spatiotemporal knowledge graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1