使用黑麦草(Lolium perenne L.)和春小麦(Triticum aestivum)的乳制品加工污泥衍生 STRUBIAS 产品的磷肥等效值

IF 2.6 3区 农林科学 Q1 AGRONOMY Journal of Plant Nutrition and Soil Science Pub Date : 2023-12-11 DOI:10.1002/jpln.202300164
W. Shi, Owen Fenton, S. M. Ashekuzzaman, K. Daly, J. J. Leahy, N. Khalaf, K. Chojnacka, C. Numviyimana, J. Warchoł, M. G. Healy
{"title":"使用黑麦草(Lolium perenne L.)和春小麦(Triticum aestivum)的乳制品加工污泥衍生 STRUBIAS 产品的磷肥等效值","authors":"W. Shi,&nbsp;Owen Fenton,&nbsp;S. M. Ashekuzzaman,&nbsp;K. Daly,&nbsp;J. J. Leahy,&nbsp;N. Khalaf,&nbsp;K. Chojnacka,&nbsp;C. Numviyimana,&nbsp;J. Warchoł,&nbsp;M. G. Healy","doi":"10.1002/jpln.202300164","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Struvite, biochar and ash products (collectively known as STRUBIAS) derived from different waste streams are used as fertilisers in agriculture. Raw dairy processing sludge (DPS) shows promise as bio-based fertilisers, but secondary STRUBIAS-derived products need further testing as fertilisers.</p>\n </section>\n \n <section>\n \n <h3> Aims</h3>\n \n <p>The objective of this study was to calculate the phosphorus mineral fertiliser equivalency (P-MFE) for some STRUBIAS products derived from DPS.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Ryegrass (<i>Lolium perenne L</i>.) and wheat (<i>Triticum aestivum</i>) pot trials were used to determine the P-MFE using the apparent P recovery (APR) method for Fe-DPS and DPS-derived struvites (Struvite 1–4), hydrochars (HC1–3) and ash.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The tested STRUBIAS products can be divided into two groups: (1) a range of products that can (<i>i.e</i>. Struvite 1–3) and (2) cannot (i.e., Struvite 4, HC1–3, ash and Fe-DPS) be considered fertilisers. In the first group, the P-MFE ranged from 66.8% to 76.7% for ryegrass and from 77.9% to 93.5% for spring wheat grain. In the second group, the P-MFE ranged from 7.8% to 58.3% for ryegrass and from −34.5% to −151.3% for spring wheat grain. The negative agronomic effects of some products for wheat grain (struvite and HC) in this study were mainly caused by high Fe content, which could be overcome by improved treatment processes.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Future policy and research must be aware that not all the DPS-derived STRUBIAS products are suitable as fertilisers and therefore need to be tested individually.</p>\n </section>\n </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202300164","citationCount":"0","resultStr":"{\"title\":\"Phosphorus fertiliser equivalent value of dairy processing sludge-derived STRUBIAS products using ryegrass (Lolium perenne L.) and spring wheat (Triticum aestivum)\",\"authors\":\"W. Shi,&nbsp;Owen Fenton,&nbsp;S. M. Ashekuzzaman,&nbsp;K. Daly,&nbsp;J. J. Leahy,&nbsp;N. Khalaf,&nbsp;K. Chojnacka,&nbsp;C. Numviyimana,&nbsp;J. Warchoł,&nbsp;M. G. Healy\",\"doi\":\"10.1002/jpln.202300164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Struvite, biochar and ash products (collectively known as STRUBIAS) derived from different waste streams are used as fertilisers in agriculture. Raw dairy processing sludge (DPS) shows promise as bio-based fertilisers, but secondary STRUBIAS-derived products need further testing as fertilisers.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>The objective of this study was to calculate the phosphorus mineral fertiliser equivalency (P-MFE) for some STRUBIAS products derived from DPS.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Ryegrass (<i>Lolium perenne L</i>.) and wheat (<i>Triticum aestivum</i>) pot trials were used to determine the P-MFE using the apparent P recovery (APR) method for Fe-DPS and DPS-derived struvites (Struvite 1–4), hydrochars (HC1–3) and ash.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The tested STRUBIAS products can be divided into two groups: (1) a range of products that can (<i>i.e</i>. Struvite 1–3) and (2) cannot (i.e., Struvite 4, HC1–3, ash and Fe-DPS) be considered fertilisers. In the first group, the P-MFE ranged from 66.8% to 76.7% for ryegrass and from 77.9% to 93.5% for spring wheat grain. In the second group, the P-MFE ranged from 7.8% to 58.3% for ryegrass and from −34.5% to −151.3% for spring wheat grain. The negative agronomic effects of some products for wheat grain (struvite and HC) in this study were mainly caused by high Fe content, which could be overcome by improved treatment processes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Future policy and research must be aware that not all the DPS-derived STRUBIAS products are suitable as fertilisers and therefore need to be tested individually.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16802,\"journal\":{\"name\":\"Journal of Plant Nutrition and Soil Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jpln.202300164\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Nutrition and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jpln.202300164\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jpln.202300164","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

从不同废物流中提取的硬石膏、生物炭和灰烬产品(统称为 STRUBIAS)被用作农业肥料。未加工的乳制品加工污泥(DPS)有望用作生物基肥料,但从 STRUBIAS 中提取的次生产品还需要进一步测试才能用作肥料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphorus fertiliser equivalent value of dairy processing sludge-derived STRUBIAS products using ryegrass (Lolium perenne L.) and spring wheat (Triticum aestivum)

Background

Struvite, biochar and ash products (collectively known as STRUBIAS) derived from different waste streams are used as fertilisers in agriculture. Raw dairy processing sludge (DPS) shows promise as bio-based fertilisers, but secondary STRUBIAS-derived products need further testing as fertilisers.

Aims

The objective of this study was to calculate the phosphorus mineral fertiliser equivalency (P-MFE) for some STRUBIAS products derived from DPS.

Methods

Ryegrass (Lolium perenne L.) and wheat (Triticum aestivum) pot trials were used to determine the P-MFE using the apparent P recovery (APR) method for Fe-DPS and DPS-derived struvites (Struvite 1–4), hydrochars (HC1–3) and ash.

Results

The tested STRUBIAS products can be divided into two groups: (1) a range of products that can (i.e. Struvite 1–3) and (2) cannot (i.e., Struvite 4, HC1–3, ash and Fe-DPS) be considered fertilisers. In the first group, the P-MFE ranged from 66.8% to 76.7% for ryegrass and from 77.9% to 93.5% for spring wheat grain. In the second group, the P-MFE ranged from 7.8% to 58.3% for ryegrass and from −34.5% to −151.3% for spring wheat grain. The negative agronomic effects of some products for wheat grain (struvite and HC) in this study were mainly caused by high Fe content, which could be overcome by improved treatment processes.

Conclusions

Future policy and research must be aware that not all the DPS-derived STRUBIAS products are suitable as fertilisers and therefore need to be tested individually.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
90
审稿时长
8-16 weeks
期刊介绍: Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years. Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH. Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are: JPNSS – Topical Divisions Special timely focus in interdisciplinarity: - sustainability & critical zone science. Soil-Plant Interactions: - rhizosphere science & soil ecology - pollutant cycling & plant-soil protection - land use & climate change. Soil Science: - soil chemistry & soil physics - soil biology & biogeochemistry - soil genesis & mineralogy. Plant Nutrition: - plant nutritional physiology - nutrient dynamics & soil fertility - ecophysiological aspects of plant nutrition.
期刊最新文献
Editorial Board: J. Plant Nutr. Soil Sci. 5/2024 Impressum: J. Plant Nutr. Soil Sci. 5/2024 Contents: J. Plant Nutr. Soil Sci. 5/2024 Cover Picture: J. Plant Nutr. Soil Sci. 5/2024 Fe toxicity tolerance is advantageous in rice growth recovery after Fe stress alleviation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1