{"title":"用于增强过氧化物硅串联太阳能电池吸收的纳米结构抗反射涂层","authors":"B. Kranthi Kumar and Nikhil Deep Gupta","doi":"10.1364/ome.503990","DOIUrl":null,"url":null,"abstract":"Perovskite-silicon tandem solar cells have captured the attention of the solar cell research community due to the advantages of perovskites, such as, an easy fabrication process using sol-gel methods and silicon bottom cells that can be fabricated using well-established fabrication techniques. The present study discusses the design, optimization, and numerical analysis related to the role of nanostructured anti-reflection coating design for perovskite (MAPbI<sub>3</sub>) silicon tandem solar cells. In the design, the top cell is taken as MAPbI<sub>3</sub> and the bottom cell is C-silicon. The anti-reflection coating is designed with SiO<sub>2</sub> nanoparticles embedded in ITO. These nanostructured top anti-reflection coating results are compared with its planar top cell counterpart. SiO<sub>2</sub> nanoparticle diameter and interparticle separation are optimized to get maximum absorption in the top cell. Upon optimization, it was found that a design having SiO<sub>2</sub> nanoparticles with a diameter of 60 nm and no interparticle separation showed the most reduction in reflection, which in turn led to an increase in absorption in the top cell. The proposed structure enhances current density by 8.3% over the planar cell. This top cell current is matched to the bottom silicon thickness. These findings were validated using Mie scattering and the Bruggmann effective medium approximation.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"38 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured anti-reflection coating for absorption enhancement in perovskite silicon tandem solar cells\",\"authors\":\"B. Kranthi Kumar and Nikhil Deep Gupta\",\"doi\":\"10.1364/ome.503990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite-silicon tandem solar cells have captured the attention of the solar cell research community due to the advantages of perovskites, such as, an easy fabrication process using sol-gel methods and silicon bottom cells that can be fabricated using well-established fabrication techniques. The present study discusses the design, optimization, and numerical analysis related to the role of nanostructured anti-reflection coating design for perovskite (MAPbI<sub>3</sub>) silicon tandem solar cells. In the design, the top cell is taken as MAPbI<sub>3</sub> and the bottom cell is C-silicon. The anti-reflection coating is designed with SiO<sub>2</sub> nanoparticles embedded in ITO. These nanostructured top anti-reflection coating results are compared with its planar top cell counterpart. SiO<sub>2</sub> nanoparticle diameter and interparticle separation are optimized to get maximum absorption in the top cell. Upon optimization, it was found that a design having SiO<sub>2</sub> nanoparticles with a diameter of 60 nm and no interparticle separation showed the most reduction in reflection, which in turn led to an increase in absorption in the top cell. The proposed structure enhances current density by 8.3% over the planar cell. This top cell current is matched to the bottom silicon thickness. These findings were validated using Mie scattering and the Bruggmann effective medium approximation.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.503990\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.503990","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanostructured anti-reflection coating for absorption enhancement in perovskite silicon tandem solar cells
Perovskite-silicon tandem solar cells have captured the attention of the solar cell research community due to the advantages of perovskites, such as, an easy fabrication process using sol-gel methods and silicon bottom cells that can be fabricated using well-established fabrication techniques. The present study discusses the design, optimization, and numerical analysis related to the role of nanostructured anti-reflection coating design for perovskite (MAPbI3) silicon tandem solar cells. In the design, the top cell is taken as MAPbI3 and the bottom cell is C-silicon. The anti-reflection coating is designed with SiO2 nanoparticles embedded in ITO. These nanostructured top anti-reflection coating results are compared with its planar top cell counterpart. SiO2 nanoparticle diameter and interparticle separation are optimized to get maximum absorption in the top cell. Upon optimization, it was found that a design having SiO2 nanoparticles with a diameter of 60 nm and no interparticle separation showed the most reduction in reflection, which in turn led to an increase in absorption in the top cell. The proposed structure enhances current density by 8.3% over the planar cell. This top cell current is matched to the bottom silicon thickness. These findings were validated using Mie scattering and the Bruggmann effective medium approximation.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.