{"title":"超越现实存在论","authors":"Marcus Schaefer, Daniel Štefankovič","doi":"10.1007/s00224-023-10151-x","DOIUrl":null,"url":null,"abstract":"<p>We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by Bürgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow.</p>","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":"78 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Existential Theory of the Reals\",\"authors\":\"Marcus Schaefer, Daniel Štefankovič\",\"doi\":\"10.1007/s00224-023-10151-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by Bürgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow.</p>\",\"PeriodicalId\":22832,\"journal\":{\"name\":\"Theory of Computing Systems\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00224-023-10151-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00224-023-10151-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by Bürgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow.
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.