{"title":"基于强化学习和多指标优化的智能合约代码修复建议","authors":"Hanyang Guo, Yingye Chen, Xiangping Chen, Yuan Huang, Zibin Zheng","doi":"10.1145/3637229","DOIUrl":null,"url":null,"abstract":"<p>A smart contract is a kind of code deployed on the blockchain that executes automatically once an event triggers a clause in the contract. Since smart contracts involve businesses such as asset transfer, they are more vulnerable to attacks, so it is crucial to ensure the security of smart contracts. Because a smart contract cannot be tampered with once deployed on the blockchain, for smart contract developers, it is necessary to fix vulnerabilities before deployment. Compared with many vulnerability detection tools for smart contracts, the amount of automatic fix approaches for smart contracts is relatively limited. These approaches mainly use defined pattern-based methods or heuristic search algorithms for vulnerability repairs. In this paper, we propose <i>RLRep</i>, a reinforcement learning-based approach to provide smart contract repair recommendations for smart contract developers automatically. This approach adopts an agent to provide repair action suggestions based on the vulnerable smart contract without any supervision, which can solve the problem of missing labeled data in machine learning-based repair methods. We evaluate our approach on a dataset containing 853 smart contract programs (programming language: Solidity) with different kinds of vulnerabilities. We split them into training and test set. The result shows that our approach can provide 54.97% correct repair recommendations for smart contracts.</p>","PeriodicalId":50933,"journal":{"name":"ACM Transactions on Software Engineering and Methodology","volume":"15 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Contract Code Repair Recommendation based on Reinforcement Learning and Multi-metric Optimization\",\"authors\":\"Hanyang Guo, Yingye Chen, Xiangping Chen, Yuan Huang, Zibin Zheng\",\"doi\":\"10.1145/3637229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A smart contract is a kind of code deployed on the blockchain that executes automatically once an event triggers a clause in the contract. Since smart contracts involve businesses such as asset transfer, they are more vulnerable to attacks, so it is crucial to ensure the security of smart contracts. Because a smart contract cannot be tampered with once deployed on the blockchain, for smart contract developers, it is necessary to fix vulnerabilities before deployment. Compared with many vulnerability detection tools for smart contracts, the amount of automatic fix approaches for smart contracts is relatively limited. These approaches mainly use defined pattern-based methods or heuristic search algorithms for vulnerability repairs. In this paper, we propose <i>RLRep</i>, a reinforcement learning-based approach to provide smart contract repair recommendations for smart contract developers automatically. This approach adopts an agent to provide repair action suggestions based on the vulnerable smart contract without any supervision, which can solve the problem of missing labeled data in machine learning-based repair methods. We evaluate our approach on a dataset containing 853 smart contract programs (programming language: Solidity) with different kinds of vulnerabilities. We split them into training and test set. The result shows that our approach can provide 54.97% correct repair recommendations for smart contracts.</p>\",\"PeriodicalId\":50933,\"journal\":{\"name\":\"ACM Transactions on Software Engineering and Methodology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Software Engineering and Methodology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3637229\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Software Engineering and Methodology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3637229","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Smart Contract Code Repair Recommendation based on Reinforcement Learning and Multi-metric Optimization
A smart contract is a kind of code deployed on the blockchain that executes automatically once an event triggers a clause in the contract. Since smart contracts involve businesses such as asset transfer, they are more vulnerable to attacks, so it is crucial to ensure the security of smart contracts. Because a smart contract cannot be tampered with once deployed on the blockchain, for smart contract developers, it is necessary to fix vulnerabilities before deployment. Compared with many vulnerability detection tools for smart contracts, the amount of automatic fix approaches for smart contracts is relatively limited. These approaches mainly use defined pattern-based methods or heuristic search algorithms for vulnerability repairs. In this paper, we propose RLRep, a reinforcement learning-based approach to provide smart contract repair recommendations for smart contract developers automatically. This approach adopts an agent to provide repair action suggestions based on the vulnerable smart contract without any supervision, which can solve the problem of missing labeled data in machine learning-based repair methods. We evaluate our approach on a dataset containing 853 smart contract programs (programming language: Solidity) with different kinds of vulnerabilities. We split them into training and test set. The result shows that our approach can provide 54.97% correct repair recommendations for smart contracts.
期刊介绍:
Designing and building a large, complex software system is a tremendous challenge. ACM Transactions on Software Engineering and Methodology (TOSEM) publishes papers on all aspects of that challenge: specification, design, development and maintenance. It covers tools and methodologies, languages, data structures, and algorithms. TOSEM also reports on successful efforts, noting practical lessons that can be scaled and transferred to other projects, and often looks at applications of innovative technologies. The tone is scholarly but readable; the content is worthy of study; the presentation is effective.