学习电力系统短路故障的几何形状,实现实时故障检测和分类

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Cyber-Physical Systems: Theory and Applications Pub Date : 2023-12-04 DOI:10.1049/cps2.12074
Juan Pablo Naranjo Cuéllar, Gustavo Ramos López, Luis Felipe Giraldo Trujillo
{"title":"学习电力系统短路故障的几何形状,实现实时故障检测和分类","authors":"Juan Pablo Naranjo Cuéllar,&nbsp;Gustavo Ramos López,&nbsp;Luis Felipe Giraldo Trujillo","doi":"10.1049/cps2.12074","DOIUrl":null,"url":null,"abstract":"<p>Given the short time intervals in which short-circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real-time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three-phase voltages of the power system. The process was conducted in real time using the <i>HIL402</i> system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"8 4","pages":"289-306"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12074","citationCount":"0","resultStr":"{\"title\":\"Learning the geometry of short-circuit faults in power systems for real-time fault detection and classification\",\"authors\":\"Juan Pablo Naranjo Cuéllar,&nbsp;Gustavo Ramos López,&nbsp;Luis Felipe Giraldo Trujillo\",\"doi\":\"10.1049/cps2.12074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the short time intervals in which short-circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real-time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three-phase voltages of the power system. The process was conducted in real time using the <i>HIL402</i> system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.</p>\",\"PeriodicalId\":36881,\"journal\":{\"name\":\"IET Cyber-Physical Systems: Theory and Applications\",\"volume\":\"8 4\",\"pages\":\"289-306\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cyber-Physical Systems: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于电力系统中发生短路故障的时间间隔很短,因此从系统发生故障到实际检测到故障之间会有一定的时间延迟。在这一小段时间内,故障电流的高幅值会对电力系统造成重大损害。根据电力系统三相电压的克拉克变换所产生的曲线的几何形状,提出了一种用于实时检测电力系统中不同类型短路故障(即 AB、BC、CA、ABC、AG、BG 和 CG 故障以及正常运行)的技术。该过程使用 HIL402 系统和 Raspberry Pi 3 实时进行,所有编程均使用 Python 编程语言。得出的结论是,利用描述与每个故障相关的椭圆的矩阵的特征值和特征向量,可以准确地描述所测试的故障类型:特征值可用于确定故障发生距离,特征向量可用于确定发生的故障类型。接下来,根据前面提到的特征描述技术设计了一个机器学习模型。该模型被嵌入到 Raspberry Pi 3 中,从而实现了对基地电力系统的实时故障检测和分类。最后,在不同的测量条件下对模型的准确性进行了测试,在一组选定的条件下取得了令人满意的结果,克服了当前研究中无法进行实时检测和分类的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning the geometry of short-circuit faults in power systems for real-time fault detection and classification

Given the short time intervals in which short-circuit faults occur in a power system, a certain time delay between the moment of a fault's inception in the system to the moment in which the fault is actually detected is introduced. In this small time margin, the high amplitudes of the fault current can deal significant damage to the power system. A technique to characterise different types of short circuit faults in a power system for real-time detection, namely AB, BC, CA, ABC, AG, BG and CG faults (and normal operation), is presented based on the geometry of the curve generated by the Clarke transform of the three-phase voltages of the power system. The process was conducted in real time using the HIL402 system and a Raspberry Pi 3, and all programming done in the Python programming language. It was concluded that the tested types of faults can be accurately characterised using the eigenvalues and eigenvectors of the matrix that characterises an ellipse associated with each fault: eigenvalues can be used to determine the fault inception distance and eigenvectors can be used to determine the type of fault that occurred. Next, the design of a machine learning model was done based on the previously mentioned characterisation technique. The model was embedded into a Raspberry Pi 3, thus enabling fault detection and classification in a base power system in real time. Finally, the accuracy of the model was tested under different measurement conditions, yielding satisfactory results for a selected set of conditions and overcoming the shortcomings presented in the current research, which do not perform detection and classification in real time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cyber-Physical Systems: Theory and Applications
IET Cyber-Physical Systems: Theory and Applications Computer Science-Computer Networks and Communications
CiteScore
5.40
自引率
6.70%
发文量
17
审稿时长
19 weeks
期刊最新文献
Guest Editorial: IoT-based secure health monitoring and tracking through estimated computing SEIR-driven semantic integration framework: Internet of Things-enhanced epidemiological surveillance in COVID-19 outbreaks using recurrent neural networks A machine learning model for Alzheimer's disease prediction Securing the Internet of Medical Things with ECG-based PUF encryption Status, challenges, and promises of data-driven battery lifetime prediction under cyber-physical system context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1