灾区车辆路由问题的新模糊方法

Pub Date : 2023-12-12 DOI:10.1515/gmj-2023-2097
Gia Sirbiladze, Bezhan Ghvaberidze, Bidzina Midodashvili, Bidzina Matsaberidze, Irina Khutsishvili
{"title":"灾区车辆路由问题的新模糊方法","authors":"Gia Sirbiladze, Bezhan Ghvaberidze, Bidzina Midodashvili, Bidzina Matsaberidze, Irina Khutsishvili","doi":"10.1515/gmj-2023-2097","DOIUrl":null,"url":null,"abstract":"Route planning problems are among the activities that have the highest impact in emergency logistical planning, goods transportation and facility location-distribution because of their effects on efficiency in resource management, service levels and client satisfaction. In the extreme conditions, such as disaster-stricken zones, the difficulty of vehicle movement between nearest different affected areas (demand points) on planning routes cause the imprecision of time of movement and the uncertainty of feasibility of movement. In this paper, the imprecision is presented by triangular fuzzy numbers and the uncertainty is presented by a possibility measure. A new two-stage, fuzzy bi-criterion optimization approach for the vehicle routing problem (VRP) is considered. On the first stage, the sample of so-called “promising” closed routes are selected based on a “constructive” approach. On the second stage, triangular fuzzy valued Choquet aggregation (TFCA) operator is constructed for the selected closed routes. The evaluation of constructed routes, levels of failure and possibility of vehicle movement on the roads are aggregated by the TFCA operator by the new criterion – minimization of infeasibility of movement. The new criterion together with the classic criterion – minimization of the total distance traveled – creates a bi-criteria fuzzy VRP. The constructed VRP is reduced to the bi-criteria fuzzy partitioning problem, and an 𝜀-constraint approach is developed for solving it. For numerical experiments, a parallel algorithm is created on the basis of D. Knuth’s algorithm of Dancing Links (DLX). An example is presented with the results of our approach for the VRP, where all Pareto-optimal solutions are found from the set of promising routes. The optimal solutions tend to avoid roads that are problematic because of extreme situations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new fuzzy approach of vehicle routing problem for disaster-stricken zones\",\"authors\":\"Gia Sirbiladze, Bezhan Ghvaberidze, Bidzina Midodashvili, Bidzina Matsaberidze, Irina Khutsishvili\",\"doi\":\"10.1515/gmj-2023-2097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Route planning problems are among the activities that have the highest impact in emergency logistical planning, goods transportation and facility location-distribution because of their effects on efficiency in resource management, service levels and client satisfaction. In the extreme conditions, such as disaster-stricken zones, the difficulty of vehicle movement between nearest different affected areas (demand points) on planning routes cause the imprecision of time of movement and the uncertainty of feasibility of movement. In this paper, the imprecision is presented by triangular fuzzy numbers and the uncertainty is presented by a possibility measure. A new two-stage, fuzzy bi-criterion optimization approach for the vehicle routing problem (VRP) is considered. On the first stage, the sample of so-called “promising” closed routes are selected based on a “constructive” approach. On the second stage, triangular fuzzy valued Choquet aggregation (TFCA) operator is constructed for the selected closed routes. The evaluation of constructed routes, levels of failure and possibility of vehicle movement on the roads are aggregated by the TFCA operator by the new criterion – minimization of infeasibility of movement. The new criterion together with the classic criterion – minimization of the total distance traveled – creates a bi-criteria fuzzy VRP. The constructed VRP is reduced to the bi-criteria fuzzy partitioning problem, and an 𝜀-constraint approach is developed for solving it. For numerical experiments, a parallel algorithm is created on the basis of D. Knuth’s algorithm of Dancing Links (DLX). An example is presented with the results of our approach for the VRP, where all Pareto-optimal solutions are found from the set of promising routes. The optimal solutions tend to avoid roads that are problematic because of extreme situations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

路线规划问题是应急物流规划、货物运输和设施选址-分配中影响最大的活动之一,因为它影响到资源管理的效率、服务水平和客户满意度。在灾区等极端条件下,规划路线上最近的不同灾区(需求点)之间的车辆移动困难,导致移动时间的不精确性和移动可行性的不确定性。在本文中,不精确度用三角模糊数表示,不确定性用可能性度量表示。本文考虑采用一种新的两阶段模糊双准则优化方法来解决车辆路由问题(VRP)。在第一阶段,根据 "建设性 "方法选择所谓 "有前途的 "封闭路线样本。第二阶段,为选定的封闭路线构建三角模糊值乔凯聚合(TFCA)算子。TFCA 运算符根据新标准--移动不可行性最小化--对已建路线、故障等级和车辆在道路上行驶的可能性进行汇总评估。新标准与传统标准--总行驶距离最小化--共同构成了双标准模糊 VRP。所构建的 VRP 简化为双标准模糊分区问题,并开发了一种𝜀-约束方法来解决该问题。为了进行数值实验,在 D. Knuth 的舞动链接(DLX)算法的基础上创建了一种并行算法。举例说明了我们的方法对 VRP 的结果,即从有希望的路线集合中找到所有帕累托最优解。最优解倾向于避开因极端情况而有问题的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
A new fuzzy approach of vehicle routing problem for disaster-stricken zones
Route planning problems are among the activities that have the highest impact in emergency logistical planning, goods transportation and facility location-distribution because of their effects on efficiency in resource management, service levels and client satisfaction. In the extreme conditions, such as disaster-stricken zones, the difficulty of vehicle movement between nearest different affected areas (demand points) on planning routes cause the imprecision of time of movement and the uncertainty of feasibility of movement. In this paper, the imprecision is presented by triangular fuzzy numbers and the uncertainty is presented by a possibility measure. A new two-stage, fuzzy bi-criterion optimization approach for the vehicle routing problem (VRP) is considered. On the first stage, the sample of so-called “promising” closed routes are selected based on a “constructive” approach. On the second stage, triangular fuzzy valued Choquet aggregation (TFCA) operator is constructed for the selected closed routes. The evaluation of constructed routes, levels of failure and possibility of vehicle movement on the roads are aggregated by the TFCA operator by the new criterion – minimization of infeasibility of movement. The new criterion together with the classic criterion – minimization of the total distance traveled – creates a bi-criteria fuzzy VRP. The constructed VRP is reduced to the bi-criteria fuzzy partitioning problem, and an 𝜀-constraint approach is developed for solving it. For numerical experiments, a parallel algorithm is created on the basis of D. Knuth’s algorithm of Dancing Links (DLX). An example is presented with the results of our approach for the VRP, where all Pareto-optimal solutions are found from the set of promising routes. The optimal solutions tend to avoid roads that are problematic because of extreme situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1