基于无索引三角形的图形局部聚类

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Computer Science Pub Date : 2023-12-13 DOI:10.1007/s11704-023-2768-7
Zhe Yuan, Zhewei Wei, Fangrui Lv, Ji-Rong Wen
{"title":"基于无索引三角形的图形局部聚类","authors":"Zhe Yuan, Zhewei Wei, Fangrui Lv, Ji-Rong Wen","doi":"10.1007/s11704-023-2768-7","DOIUrl":null,"url":null,"abstract":"<p>Motif-based graph local clustering (MGLC) is a popular method for graph mining tasks due to its various applications. However, the traditional two-phase approach of precomputing motif weights before performing local clustering loses locality and is impractical for large graphs. While some attempts have been made to address the efficiency bottleneck, there is still no applicable algorithm for large scale graphs with billions of edges. In this paper, we propose a purely local and index-free method called Index-free Triangle-based Graph Local Clustering (TGLC*) to solve the MGLC problem w.r.t. a triangle. TGLC* directly estimates the Personalized PageRank (PPR) vector using random walks with the desired triangle-weighted distribution and proposes the clustering result using a standard sweep procedure. We demonstrate TGLC*’s scalability through theoretical analysis and its practical benefits through a novel visualization layout. TGLC* is the first algorithm to solve the MGLC problem without precomputing the motif weight. Extensive experiments on seven real-world large-scale datasets show that TGLC* is applicable and scalable for large graphs.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Index-free triangle-based graph local clustering\",\"authors\":\"Zhe Yuan, Zhewei Wei, Fangrui Lv, Ji-Rong Wen\",\"doi\":\"10.1007/s11704-023-2768-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motif-based graph local clustering (MGLC) is a popular method for graph mining tasks due to its various applications. However, the traditional two-phase approach of precomputing motif weights before performing local clustering loses locality and is impractical for large graphs. While some attempts have been made to address the efficiency bottleneck, there is still no applicable algorithm for large scale graphs with billions of edges. In this paper, we propose a purely local and index-free method called Index-free Triangle-based Graph Local Clustering (TGLC*) to solve the MGLC problem w.r.t. a triangle. TGLC* directly estimates the Personalized PageRank (PPR) vector using random walks with the desired triangle-weighted distribution and proposes the clustering result using a standard sweep procedure. We demonstrate TGLC*’s scalability through theoretical analysis and its practical benefits through a novel visualization layout. TGLC* is the first algorithm to solve the MGLC problem without precomputing the motif weight. Extensive experiments on seven real-world large-scale datasets show that TGLC* is applicable and scalable for large graphs.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-2768-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2768-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于图案的图局部聚类(MGLC)因其应用广泛而成为图挖掘任务的常用方法。然而,传统的两阶段方法是先预先计算图案权重,然后再进行局部聚类,这种方法失去了局部性,对于大型图来说不切实际。虽然已经有人尝试解决效率瓶颈问题,但仍没有适用于拥有数十亿条边的大规模图的算法。在本文中,我们提出了一种纯局部、无索引的方法,称为无索引三角形图局部聚类(TGLC*),用于解决三角形的 MGLC 问题。TGLC* 使用具有所需的三角形加权分布的随机行走直接估计个性化页面排名(PPR)向量,并使用标准扫频程序提出聚类结果。我们通过理论分析展示了 TGLC* 的可扩展性,并通过新颖的可视化布局展示了其实际优势。TGLC* 是首个无需预先计算图案权重就能解决 MGLC 问题的算法。在七个真实世界的大规模数据集上进行的广泛实验表明,TGLC* 适用于大型图并具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Index-free triangle-based graph local clustering

Motif-based graph local clustering (MGLC) is a popular method for graph mining tasks due to its various applications. However, the traditional two-phase approach of precomputing motif weights before performing local clustering loses locality and is impractical for large graphs. While some attempts have been made to address the efficiency bottleneck, there is still no applicable algorithm for large scale graphs with billions of edges. In this paper, we propose a purely local and index-free method called Index-free Triangle-based Graph Local Clustering (TGLC*) to solve the MGLC problem w.r.t. a triangle. TGLC* directly estimates the Personalized PageRank (PPR) vector using random walks with the desired triangle-weighted distribution and proposes the clustering result using a standard sweep procedure. We demonstrate TGLC*’s scalability through theoretical analysis and its practical benefits through a novel visualization layout. TGLC* is the first algorithm to solve the MGLC problem without precomputing the motif weight. Extensive experiments on seven real-world large-scale datasets show that TGLC* is applicable and scalable for large graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
期刊最新文献
A comprehensive survey of federated transfer learning: challenges, methods and applications DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder Graph foundation model ABLkit: a Python toolkit for abductive learning SEOE: an option graph based semantically embedding method for prenatal depression detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1