共享处理的多任务调度

IF 1.9 4区 管理学 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Naval Research Logistics Pub Date : 2023-12-11 DOI:10.1002/nav.22167
Bin Fu, Yumei Huo, Hairong Zhao
{"title":"共享处理的多任务调度","authors":"Bin Fu, Yumei Huo, Hairong Zhao","doi":"10.1002/nav.22167","DOIUrl":null,"url":null,"abstract":"Recently, the problem of multitasking scheduling has raised a lot of interest in the service industries. Hall et al. (Discrete Applied Mathematics, 2016) proposed a shared processing multitasking scheduling model which allows a team to continue to work on the primary tasks while processing the routinely scheduled activities as they occur. With a team being modeled as a single machine, the processing sharing of the machine is achieved by allocating a fraction of the processing capacity to routine jobs and the remaining fraction, which we denote as sharing ratio, to the primary jobs. In this paper, we generalize this model to parallel machines and allow the fraction of the processing capacity assigned to routine jobs to vary from one to another. The objectives are minimizing makespan and minimizing the total completion time of primary jobs. We show that for both objectives, there is no polynomial time approximation algorithm unless P=NP if the sharing ratios are arbitrary for all machines. Then we consider the problems where the sharing ratios on some machines have a constant lower bound. For each objective, we analyze the performance of the classical scheduling algorithms and their variations and then develop a polynomial time approximation scheme when the number of machines is a constant.","PeriodicalId":49772,"journal":{"name":"Naval Research Logistics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitasking scheduling with shared processing\",\"authors\":\"Bin Fu, Yumei Huo, Hairong Zhao\",\"doi\":\"10.1002/nav.22167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the problem of multitasking scheduling has raised a lot of interest in the service industries. Hall et al. (Discrete Applied Mathematics, 2016) proposed a shared processing multitasking scheduling model which allows a team to continue to work on the primary tasks while processing the routinely scheduled activities as they occur. With a team being modeled as a single machine, the processing sharing of the machine is achieved by allocating a fraction of the processing capacity to routine jobs and the remaining fraction, which we denote as sharing ratio, to the primary jobs. In this paper, we generalize this model to parallel machines and allow the fraction of the processing capacity assigned to routine jobs to vary from one to another. The objectives are minimizing makespan and minimizing the total completion time of primary jobs. We show that for both objectives, there is no polynomial time approximation algorithm unless P=NP if the sharing ratios are arbitrary for all machines. Then we consider the problems where the sharing ratios on some machines have a constant lower bound. For each objective, we analyze the performance of the classical scheduling algorithms and their variations and then develop a polynomial time approximation scheme when the number of machines is a constant.\",\"PeriodicalId\":49772,\"journal\":{\"name\":\"Naval Research Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naval Research Logistics\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1002/nav.22167\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1002/nav.22167","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,多任务调度问题在服务行业引起了广泛关注。Hall 等人(《离散应用数学》,2016 年)提出了一种共享处理多任务调度模型,该模型允许团队在处理常规计划活动的同时继续完成主要任务。团队被模拟为一台机器,机器的处理共享是通过将一部分处理能力分配给常规工作,剩余部分(我们称之为共享率)分配给主要工作来实现的。在本文中,我们将这一模型推广到并行机器上,并允许分配给例行工作的处理能力各不相同。我们的目标是最大限度地缩短时间跨度和最大限度地缩短主作业的总完成时间。我们的研究表明,对于这两个目标,如果所有机器的共享率都是任意的,则除非 P=NP 否则不存在多项式时间近似算法。然后,我们考虑了某些机器上的共享率具有恒定下限的问题。针对每个目标,我们分析了经典调度算法及其变体的性能,然后开发了一种当机器数量为常数时的多项式时间近似方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multitasking scheduling with shared processing
Recently, the problem of multitasking scheduling has raised a lot of interest in the service industries. Hall et al. (Discrete Applied Mathematics, 2016) proposed a shared processing multitasking scheduling model which allows a team to continue to work on the primary tasks while processing the routinely scheduled activities as they occur. With a team being modeled as a single machine, the processing sharing of the machine is achieved by allocating a fraction of the processing capacity to routine jobs and the remaining fraction, which we denote as sharing ratio, to the primary jobs. In this paper, we generalize this model to parallel machines and allow the fraction of the processing capacity assigned to routine jobs to vary from one to another. The objectives are minimizing makespan and minimizing the total completion time of primary jobs. We show that for both objectives, there is no polynomial time approximation algorithm unless P=NP if the sharing ratios are arbitrary for all machines. Then we consider the problems where the sharing ratios on some machines have a constant lower bound. For each objective, we analyze the performance of the classical scheduling algorithms and their variations and then develop a polynomial time approximation scheme when the number of machines is a constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Naval Research Logistics
Naval Research Logistics 管理科学-运筹学与管理科学
CiteScore
4.20
自引率
4.30%
发文量
47
审稿时长
8 months
期刊介绍: Submissions that are most appropriate for NRL are papers addressing modeling and analysis of problems motivated by real-world applications; major methodological advances in operations research and applied statistics; and expository or survey pieces of lasting value. Areas represented include (but are not limited to) probability, statistics, simulation, optimization, game theory, quality, scheduling, reliability, maintenance, supply chain, decision analysis, and combat models. Special issues devoted to a single topic are published occasionally, and proposals for special issues are welcomed by the Editorial Board.
期刊最新文献
Partial information sharing in supply chains with ARMA demand Efficient online estimation and remaining useful life prediction based on the inverse Gaussian process Double‐sided queues and their applications to vaccine inventory management Optimal condition‐based parameter learning and mission abort decisions Single machine scheduling with the total weighted late work and rejection cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1