{"title":"具有可控波动性的位移单调均值场博弈的定量收敛性","authors":"Joe Jackson, Ludovic Tangpi","doi":"10.1287/moor.2023.0106","DOIUrl":null,"url":null,"abstract":"We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"17 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Quantitative Convergence for Displacement Monotone Mean Field Games with Controlled Volatility\",\"authors\":\"Joe Jackson, Ludovic Tangpi\",\"doi\":\"10.1287/moor.2023.0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0106\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Quantitative Convergence for Displacement Monotone Mean Field Games with Controlled Volatility
We study the convergence problem for mean field games with common noise and controlled volatility. We adopt the strategy recently put forth by Laurière and the second author, using the maximum principle to recast the convergence problem as a question of “forward-backward propagation of chaos” (i.e., (conditional) propagation of chaos for systems of particles evolving forward and backward in time). Our main results show that displacement monotonicity can be used to obtain this propagation of chaos, which leads to quantitative convergence results for open-loop Nash equilibria for a class of mean field games. Our results seem to be the first (quantitative or qualitative) that apply to games in which the common noise is controlled. The proofs are relatively simple and rely on a well-known technique for proving wellposedness of forward-backward stochastic differential equations, which is combined with displacement monotonicity in a novel way. To demonstrate the flexibility of the approach, we also use the same arguments to obtain convergence results for a class of infinite horizon discounted mean field games.Funding: J. Jackson is supported by the National Science Foundation [Grant DGE1610403]. L. Tangpi is partially supported by the National Science Foundation [Grants DMS-2005832 and DMS-2143861].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.