{"title":"SPDC 中双光子联合光谱振幅的对称和非对称相位调制","authors":"Jinbao Wang","doi":"10.1051/jeos/2023046","DOIUrl":null,"url":null,"abstract":"We analysis the generation of entangled biphotons by symmetric and antisymmetric phase modulation to obtain the corresponding joint spectral amplitude functions(JSAF) during the spontaneous parametric down-conversion(SPDC). With the help of Schmidt decomposition, the distribution probabilities of different modes are analyzed and the degree of entanglement is improved, which in turn leads to the effective regulation of entanglement, entropy, Schmidt coefficient and Schmidt number. Through simulations, we find that the antisymmetric phase modulation can slightly broaden the spectrum width, and the symmetric phase modulation distribution is more advantageous when the crystal is shorter.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Symmetric and Antisymmetric Phase Modulation for the Joint Spectral Amplitude of the Biphotons in SPDC\",\"authors\":\"Jinbao Wang\",\"doi\":\"10.1051/jeos/2023046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analysis the generation of entangled biphotons by symmetric and antisymmetric phase modulation to obtain the corresponding joint spectral amplitude functions(JSAF) during the spontaneous parametric down-conversion(SPDC). With the help of Schmidt decomposition, the distribution probabilities of different modes are analyzed and the degree of entanglement is improved, which in turn leads to the effective regulation of entanglement, entropy, Schmidt coefficient and Schmidt number. Through simulations, we find that the antisymmetric phase modulation can slightly broaden the spectrum width, and the symmetric phase modulation distribution is more advantageous when the crystal is shorter.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023046\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023046","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
The Symmetric and Antisymmetric Phase Modulation for the Joint Spectral Amplitude of the Biphotons in SPDC
We analysis the generation of entangled biphotons by symmetric and antisymmetric phase modulation to obtain the corresponding joint spectral amplitude functions(JSAF) during the spontaneous parametric down-conversion(SPDC). With the help of Schmidt decomposition, the distribution probabilities of different modes are analyzed and the degree of entanglement is improved, which in turn leads to the effective regulation of entanglement, entropy, Schmidt coefficient and Schmidt number. Through simulations, we find that the antisymmetric phase modulation can slightly broaden the spectrum width, and the symmetric phase modulation distribution is more advantageous when the crystal is shorter.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.