WOD 随机变量加权和的强收敛性及其在 EV 回归模型中的应用

Pub Date : 2023-12-08 DOI:10.21136/AM.2023.0004-23
Liwang Ding, Caoqing Jiang
{"title":"WOD 随机变量加权和的强收敛性及其在 EV 回归模型中的应用","authors":"Liwang Ding,&nbsp;Caoqing Jiang","doi":"10.21136/AM.2023.0004-23","DOIUrl":null,"url":null,"abstract":"<div><p>The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong convergence for weighted sums of WOD random variables and its application in the EV regression model\",\"authors\":\"Liwang Ding,&nbsp;Caoqing Jiang\",\"doi\":\"10.21136/AM.2023.0004-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.21136/AM.2023.0004-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2023.0004-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了广泛正交依存(WOD)随机变量加权和的强收敛性。作为应用,我们进一步研究了 WOD 随机变量 EV 回归模型中最小二乘估计的强一致性。为了证实理论结果,我们进行了模拟研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Strong convergence for weighted sums of WOD random variables and its application in the EV regression model

The strong convergence for weighted sums of widely orthant dependent (WOD) random variables is investigated. As an application, we further investigate the strong consistency of the least squares estimator in EV regression model for WOD random variables. A simulation study is carried out to confirm the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1