Juan Felipe Valencia-Mosquera, David Griol, Mayra Solarte-Montoya, Cristhian Figueroa, Juan Carlos Corrales, David Camilo Corrales
{"title":"基于哥伦比亚考卡咖啡种植者祖传知识的咖啡生物侵害检测定性数据集","authors":"Juan Felipe Valencia-Mosquera, David Griol, Mayra Solarte-Montoya, Cristhian Figueroa, Juan Carlos Corrales, David Camilo Corrales","doi":"10.3390/data8120186","DOIUrl":null,"url":null,"abstract":"This paper describes a novel qualitative dataset regarding coffee pests based on the ancestral knowledge of coffee farmers in the Department of Cauca, Colombia. The dataset has been obtained from a survey applied to coffee growers with 432 records and 41 variables collected weekly from September 2020 to August 2021. The qualitative dataset includes climatic conditions, productive activities, external conditions, and coffee bio-aggressors. This dataset allows researchers to find patterns for coffee crop protection through the ancestral knowledge not detected by real-time agricultural sensors. As far as we are concerned, there are no datasets like the one presented in this paper with similar characteristics of qualitative value that express the empirical knowledge of coffee farmers used to detect triggers of causal behaviors of pests and diseases in coffee crops.","PeriodicalId":36824,"journal":{"name":"Data","volume":"38 14","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia\",\"authors\":\"Juan Felipe Valencia-Mosquera, David Griol, Mayra Solarte-Montoya, Cristhian Figueroa, Juan Carlos Corrales, David Camilo Corrales\",\"doi\":\"10.3390/data8120186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel qualitative dataset regarding coffee pests based on the ancestral knowledge of coffee farmers in the Department of Cauca, Colombia. The dataset has been obtained from a survey applied to coffee growers with 432 records and 41 variables collected weekly from September 2020 to August 2021. The qualitative dataset includes climatic conditions, productive activities, external conditions, and coffee bio-aggressors. This dataset allows researchers to find patterns for coffee crop protection through the ancestral knowledge not detected by real-time agricultural sensors. As far as we are concerned, there are no datasets like the one presented in this paper with similar characteristics of qualitative value that express the empirical knowledge of coffee farmers used to detect triggers of causal behaviors of pests and diseases in coffee crops.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"38 14\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.3390/data8120186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.3390/data8120186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Qualitative Dataset for Coffee Bio-Aggressors Detection Based on the Ancestral Knowledge of the Cauca Coffee Farmers in Colombia
This paper describes a novel qualitative dataset regarding coffee pests based on the ancestral knowledge of coffee farmers in the Department of Cauca, Colombia. The dataset has been obtained from a survey applied to coffee growers with 432 records and 41 variables collected weekly from September 2020 to August 2021. The qualitative dataset includes climatic conditions, productive activities, external conditions, and coffee bio-aggressors. This dataset allows researchers to find patterns for coffee crop protection through the ancestral knowledge not detected by real-time agricultural sensors. As far as we are concerned, there are no datasets like the one presented in this paper with similar characteristics of qualitative value that express the empirical knowledge of coffee farmers used to detect triggers of causal behaviors of pests and diseases in coffee crops.