添加钼酸盐的镍合金基复合材料的高温摩擦和磨损行为

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-12-07 DOI:10.3390/lubricants11120516
Jinming Zhen, Congcong Zhen, Yunxiang Han, Lin Yuan, Liwei Yang, Tianqi Yang, Shuo Guo
{"title":"添加钼酸盐的镍合金基复合材料的高温摩擦和磨损行为","authors":"Jinming Zhen, Congcong Zhen, Yunxiang Han, Lin Yuan, Liwei Yang, Tianqi Yang, Shuo Guo","doi":"10.3390/lubricants11120516","DOIUrl":null,"url":null,"abstract":"To improve the tribological characteristics of materials employed in spatial mechanisms, there is a significant requirement to develop solid lubricating composites with superior performance. This study investigates the tribological characteristics of composites consisting of a nickel matrix combined with silver molybdate and barium molybdate. The experimental analysis focuses on evaluating the tribological behaviors of these composites from 25 °C to 800 °C. The findings indicate that the combined application of silver molybdate and barium molybdate resulted in enhanced self-lubricating properties of the composites, particularly at temperatures over 400 °C. The inclusion of both silver molybdate and barium molybdate in the composite resulted in the achievement of a low friction coefficient (0.34–0.5), as well as a wear rate ranging from 0.47 to 1.25 × 10−4 mm3 N−1m−1, within the temperature range of 400 to 800 °C. Furthermore, an analysis was conducted to examine the wear processes of the composites at various sliding temperatures. This analysis was based on the evaluation of the chemical composition and morphologies of the sliding surfaces, which were verified by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"20 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate\",\"authors\":\"Jinming Zhen, Congcong Zhen, Yunxiang Han, Lin Yuan, Liwei Yang, Tianqi Yang, Shuo Guo\",\"doi\":\"10.3390/lubricants11120516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the tribological characteristics of materials employed in spatial mechanisms, there is a significant requirement to develop solid lubricating composites with superior performance. This study investigates the tribological characteristics of composites consisting of a nickel matrix combined with silver molybdate and barium molybdate. The experimental analysis focuses on evaluating the tribological behaviors of these composites from 25 °C to 800 °C. The findings indicate that the combined application of silver molybdate and barium molybdate resulted in enhanced self-lubricating properties of the composites, particularly at temperatures over 400 °C. The inclusion of both silver molybdate and barium molybdate in the composite resulted in the achievement of a low friction coefficient (0.34–0.5), as well as a wear rate ranging from 0.47 to 1.25 × 10−4 mm3 N−1m−1, within the temperature range of 400 to 800 °C. Furthermore, an analysis was conducted to examine the wear processes of the composites at various sliding temperatures. This analysis was based on the evaluation of the chemical composition and morphologies of the sliding surfaces, which were verified by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"20 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120516\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120516","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了改善空间机构材料的摩擦学特性,需要开发性能优良的固体润滑复合材料。研究了镍基与钼酸银、钼酸钡复合材料的摩擦学特性。实验分析的重点是评估这些复合材料在25°C至800°C范围内的摩擦学行为。研究结果表明,钼酸银和钼酸钡的联合应用增强了复合材料的自润滑性能,特别是在温度超过400°C时。在复合材料中加入钼酸银和钼酸钡,在400至800℃的温度范围内,获得了较低的摩擦系数(0.34-0.5),以及0.47至1.25 × 10−4 mm3 N−1m−1的磨损率。此外,还对复合材料在不同滑动温度下的磨损过程进行了分析。这一分析是基于对滑动表面的化学成分和形貌的评估,并通过扫描电子显微镜(SEM)、能量色散x射线能谱(EDS)和拉曼光谱进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-Temperature Friction and Wear Behavior of Nickel-Alloy Matrix Composites with the Addition of Molybdate
To improve the tribological characteristics of materials employed in spatial mechanisms, there is a significant requirement to develop solid lubricating composites with superior performance. This study investigates the tribological characteristics of composites consisting of a nickel matrix combined with silver molybdate and barium molybdate. The experimental analysis focuses on evaluating the tribological behaviors of these composites from 25 °C to 800 °C. The findings indicate that the combined application of silver molybdate and barium molybdate resulted in enhanced self-lubricating properties of the composites, particularly at temperatures over 400 °C. The inclusion of both silver molybdate and barium molybdate in the composite resulted in the achievement of a low friction coefficient (0.34–0.5), as well as a wear rate ranging from 0.47 to 1.25 × 10−4 mm3 N−1m−1, within the temperature range of 400 to 800 °C. Furthermore, an analysis was conducted to examine the wear processes of the composites at various sliding temperatures. This analysis was based on the evaluation of the chemical composition and morphologies of the sliding surfaces, which were verified by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1