{"title":"南极洲白垩纪地层及其全球意义","authors":"J. Crame, Jane E. Francis","doi":"10.1144/sp545-2023-153","DOIUrl":null,"url":null,"abstract":"The Cretaceous period is particularly well represented by a thick sequence of clastic sedimentary rocks exposed in the Antarctic Peninsula region of western Antarctica. This was an active margin throughout the Late Mesozoic and in total some 7km+ of Cretaceous sedimentary rocks accumulated in a series of fore-, intra-, and back-arc basins. The Fossil Bluff Group of eastern Alexander Island can be traced from the Jurassic - Cretaceous boundary into the Upper Albian and represents a broad-scale shallowing-upwards sequence from deep marine to a prominent Upper Albian fluvial interval in which high density forests developed at a palaeolatitude of 75°S. The Cretaceous sequence exposed in the James Ross Island group continues right through the Upper Cretaceous to the K–Pg boundary. The Campanian - Maastrichtian succession in particular is over 2km in total thickness and richly fossiliferous. The improved Cretaceous stratigraphy of Antarctica is an invaluable terrestrial record of climatic change at a high palaeolatitude. This includes a gradual increase in temperature to the Cretaceous Thermal Maximum, and then a decline to the K–Pg boundary. There may be no simple link between these palaeotemperature changes and Cretaceous patterns of biotic radiation and extinction.","PeriodicalId":281618,"journal":{"name":"Geological Society, London, Special Publications","volume":"28 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cretaceous stratigraphy of Antarctica and its global significance\",\"authors\":\"J. Crame, Jane E. Francis\",\"doi\":\"10.1144/sp545-2023-153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cretaceous period is particularly well represented by a thick sequence of clastic sedimentary rocks exposed in the Antarctic Peninsula region of western Antarctica. This was an active margin throughout the Late Mesozoic and in total some 7km+ of Cretaceous sedimentary rocks accumulated in a series of fore-, intra-, and back-arc basins. The Fossil Bluff Group of eastern Alexander Island can be traced from the Jurassic - Cretaceous boundary into the Upper Albian and represents a broad-scale shallowing-upwards sequence from deep marine to a prominent Upper Albian fluvial interval in which high density forests developed at a palaeolatitude of 75°S. The Cretaceous sequence exposed in the James Ross Island group continues right through the Upper Cretaceous to the K–Pg boundary. The Campanian - Maastrichtian succession in particular is over 2km in total thickness and richly fossiliferous. The improved Cretaceous stratigraphy of Antarctica is an invaluable terrestrial record of climatic change at a high palaeolatitude. This includes a gradual increase in temperature to the Cretaceous Thermal Maximum, and then a decline to the K–Pg boundary. There may be no simple link between these palaeotemperature changes and Cretaceous patterns of biotic radiation and extinction.\",\"PeriodicalId\":281618,\"journal\":{\"name\":\"Geological Society, London, Special Publications\",\"volume\":\"28 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society, London, Special Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/sp545-2023-153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society, London, Special Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/sp545-2023-153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cretaceous stratigraphy of Antarctica and its global significance
The Cretaceous period is particularly well represented by a thick sequence of clastic sedimentary rocks exposed in the Antarctic Peninsula region of western Antarctica. This was an active margin throughout the Late Mesozoic and in total some 7km+ of Cretaceous sedimentary rocks accumulated in a series of fore-, intra-, and back-arc basins. The Fossil Bluff Group of eastern Alexander Island can be traced from the Jurassic - Cretaceous boundary into the Upper Albian and represents a broad-scale shallowing-upwards sequence from deep marine to a prominent Upper Albian fluvial interval in which high density forests developed at a palaeolatitude of 75°S. The Cretaceous sequence exposed in the James Ross Island group continues right through the Upper Cretaceous to the K–Pg boundary. The Campanian - Maastrichtian succession in particular is over 2km in total thickness and richly fossiliferous. The improved Cretaceous stratigraphy of Antarctica is an invaluable terrestrial record of climatic change at a high palaeolatitude. This includes a gradual increase in temperature to the Cretaceous Thermal Maximum, and then a decline to the K–Pg boundary. There may be no simple link between these palaeotemperature changes and Cretaceous patterns of biotic radiation and extinction.