{"title":"利用混合现实空间界面创建和操控三维路径","authors":"Courtney Hutton Pospick, Evan Suma Rosenberg","doi":"10.3389/frvir.2023.1192757","DOIUrl":null,"url":null,"abstract":"Mixed reality offers unique opportunities to situate complex tasks within spatial environments. One such task is the creation and manipulation of intricate, three-dimensional paths, which remains a crucial challenge in many fields, including animation, architecture, and robotics. This paper presents an investigation into the possibilities of spatially situated path creation using new virtual and augmented reality technologies and examines how these technologies can be leveraged to afford more intuitive and natural path creation. We present a formative study (n = 20) evaluating an initial path planning interface situated in the context of augmented reality and human-robot interaction. Based on the findings of this study, we detail the development of two novel techniques for spatially situated path planning and manipulation that afford intuitive, expressive path creation at varying scales. We describe a comprehensive user study (n = 36) investigating the effectiveness, learnability, and efficiency of both techniques when paired with a range of canonical placement strategies. The results of this study confirm the usability of these interaction metaphors and provide further insight into how spatial interaction can be discreetly leveraged to enable interaction at scale. Overall, this work contributes to the development of 3DUIs that expand the possibilities for situating path-driven tasks in spatial environments.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating and manipulating 3D paths with mixed reality spatial interfaces\",\"authors\":\"Courtney Hutton Pospick, Evan Suma Rosenberg\",\"doi\":\"10.3389/frvir.2023.1192757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed reality offers unique opportunities to situate complex tasks within spatial environments. One such task is the creation and manipulation of intricate, three-dimensional paths, which remains a crucial challenge in many fields, including animation, architecture, and robotics. This paper presents an investigation into the possibilities of spatially situated path creation using new virtual and augmented reality technologies and examines how these technologies can be leveraged to afford more intuitive and natural path creation. We present a formative study (n = 20) evaluating an initial path planning interface situated in the context of augmented reality and human-robot interaction. Based on the findings of this study, we detail the development of two novel techniques for spatially situated path planning and manipulation that afford intuitive, expressive path creation at varying scales. We describe a comprehensive user study (n = 36) investigating the effectiveness, learnability, and efficiency of both techniques when paired with a range of canonical placement strategies. The results of this study confirm the usability of these interaction metaphors and provide further insight into how spatial interaction can be discreetly leveraged to enable interaction at scale. Overall, this work contributes to the development of 3DUIs that expand the possibilities for situating path-driven tasks in spatial environments.\",\"PeriodicalId\":73116,\"journal\":{\"name\":\"Frontiers in virtual reality\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in virtual reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frvir.2023.1192757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in virtual reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frvir.2023.1192757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Creating and manipulating 3D paths with mixed reality spatial interfaces
Mixed reality offers unique opportunities to situate complex tasks within spatial environments. One such task is the creation and manipulation of intricate, three-dimensional paths, which remains a crucial challenge in many fields, including animation, architecture, and robotics. This paper presents an investigation into the possibilities of spatially situated path creation using new virtual and augmented reality technologies and examines how these technologies can be leveraged to afford more intuitive and natural path creation. We present a formative study (n = 20) evaluating an initial path planning interface situated in the context of augmented reality and human-robot interaction. Based on the findings of this study, we detail the development of two novel techniques for spatially situated path planning and manipulation that afford intuitive, expressive path creation at varying scales. We describe a comprehensive user study (n = 36) investigating the effectiveness, learnability, and efficiency of both techniques when paired with a range of canonical placement strategies. The results of this study confirm the usability of these interaction metaphors and provide further insight into how spatial interaction can be discreetly leveraged to enable interaction at scale. Overall, this work contributes to the development of 3DUIs that expand the possibilities for situating path-driven tasks in spatial environments.