密歇根湖海滩甲壳动物浮游生物的空间密度、生物量和组成

IF 2.1 3区 农林科学 Q2 FISHERIES Fishes Pub Date : 2023-12-06 DOI:10.3390/fishes8120599
Samuel J. Johnston, Jason B. Smith, Brady D. Slater, J. Doubek
{"title":"密歇根湖海滩甲壳动物浮游生物的空间密度、生物量和组成","authors":"Samuel J. Johnston, Jason B. Smith, Brady D. Slater, J. Doubek","doi":"10.3390/fishes8120599","DOIUrl":null,"url":null,"abstract":"Ecosystem alterations to Lake Michigan (LM), such as the invasion of dreissenid mussels, have decreased the abundance of phytoplankton and, subsequently, zooplankton, which has implications for Great Lake fisheries. The community composition of zooplankton has also been altered over the past 20 years in LM, shifting the summer dominance from cladoceran to calanoid taxa. However, most of our information on zooplankton community dynamics is from deeper pelagic zones. The nearshore beach (≤1 m) habitat, which serves as a critical nursery for some larvae and juvenile fish, is composed of different zooplankton taxa than deeper zones, but limited data are available for comparison. We conducted a standardized summer sampling campaign to characterize the zooplankton community across 32 beaches in LM. We found the lowest crustacean zooplankton density and biomass on northern LM beaches and a higher zooplankton density and biomass on Greater Green Bay and central LM beaches, which had warmer water temperatures. Smaller-bodied cladocera (mainly Bosmina) and cyclopoid taxa were the most abundant groups on beaches. Our results provide the first comprehensive characterization of zooplankton on beaches in the Great Lakes, with applications for other lake systems. These results may help identify potential “hot spots” of fish recruitment for management.","PeriodicalId":12405,"journal":{"name":"Fishes","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Density, Biomass, and Composition of Crustacean Zooplankton on Lake Michigan Beaches\",\"authors\":\"Samuel J. Johnston, Jason B. Smith, Brady D. Slater, J. Doubek\",\"doi\":\"10.3390/fishes8120599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecosystem alterations to Lake Michigan (LM), such as the invasion of dreissenid mussels, have decreased the abundance of phytoplankton and, subsequently, zooplankton, which has implications for Great Lake fisheries. The community composition of zooplankton has also been altered over the past 20 years in LM, shifting the summer dominance from cladoceran to calanoid taxa. However, most of our information on zooplankton community dynamics is from deeper pelagic zones. The nearshore beach (≤1 m) habitat, which serves as a critical nursery for some larvae and juvenile fish, is composed of different zooplankton taxa than deeper zones, but limited data are available for comparison. We conducted a standardized summer sampling campaign to characterize the zooplankton community across 32 beaches in LM. We found the lowest crustacean zooplankton density and biomass on northern LM beaches and a higher zooplankton density and biomass on Greater Green Bay and central LM beaches, which had warmer water temperatures. Smaller-bodied cladocera (mainly Bosmina) and cyclopoid taxa were the most abundant groups on beaches. Our results provide the first comprehensive characterization of zooplankton on beaches in the Great Lakes, with applications for other lake systems. These results may help identify potential “hot spots” of fish recruitment for management.\",\"PeriodicalId\":12405,\"journal\":{\"name\":\"Fishes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fishes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fishes8120599\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fishes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fishes8120599","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

密歇根湖(LM)生态系统的改变,如贻贝的入侵,减少了浮游植物的丰度,进而减少了浮游动物的丰度,这对大湖的渔业产生了影响。近20年来,浮游动物的群落组成也发生了变化,夏季浮游动物的优势从枝海类转向了鱿鱼类。然而,我们关于浮游动物群落动态的大部分信息来自较深的远洋区。近岸海滩(≤1 m)是一些幼鱼和幼鱼的重要栖息地,与深水区相比,它由不同的浮游动物类群组成,但可供比较的数据有限。我们进行了标准化的夏季采样活动,以表征LM的32个海滩的浮游动物群落。浮游动物密度和生物量在LM海滩北部最低,而大绿湾和LM海滩中部水温较高,浮游动物密度和生物量较高。海滩上最丰富的类群是小体枝角目(主要为Bosmina)和cyclopoid类群。我们的研究结果首次提供了五大湖海滩浮游动物的综合特征,并应用于其他湖泊系统。这些结果可能有助于确定潜在的鱼类招募“热点”进行管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Density, Biomass, and Composition of Crustacean Zooplankton on Lake Michigan Beaches
Ecosystem alterations to Lake Michigan (LM), such as the invasion of dreissenid mussels, have decreased the abundance of phytoplankton and, subsequently, zooplankton, which has implications for Great Lake fisheries. The community composition of zooplankton has also been altered over the past 20 years in LM, shifting the summer dominance from cladoceran to calanoid taxa. However, most of our information on zooplankton community dynamics is from deeper pelagic zones. The nearshore beach (≤1 m) habitat, which serves as a critical nursery for some larvae and juvenile fish, is composed of different zooplankton taxa than deeper zones, but limited data are available for comparison. We conducted a standardized summer sampling campaign to characterize the zooplankton community across 32 beaches in LM. We found the lowest crustacean zooplankton density and biomass on northern LM beaches and a higher zooplankton density and biomass on Greater Green Bay and central LM beaches, which had warmer water temperatures. Smaller-bodied cladocera (mainly Bosmina) and cyclopoid taxa were the most abundant groups on beaches. Our results provide the first comprehensive characterization of zooplankton on beaches in the Great Lakes, with applications for other lake systems. These results may help identify potential “hot spots” of fish recruitment for management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fishes
Fishes Multiple-
CiteScore
1.90
自引率
8.70%
发文量
311
期刊最新文献
Effect of a Guar Meal Protein Concentrate in Replacement of Conventional Feedstuffs on Productive Performances and Gut Health of Rainbow Trout (Oncorhynchus mykiss) RTL-YOLOv8n: A Lightweight Model for Efficient and Accurate Underwater Target Detection Wetted Ramps Selectively Block Upstream Passage of Adult Sea Lampreys Practice of Territorial Use Rights in Fisheries in Coastal Fishery Management in China: A Case Study of the Island Reefs Fishery Lease Policy from Shengsi County in Zhejiang Province Characterization of Ovarian Lipid Composition in the Largemouth Bronze Gudgeon (Coreius guichenoti) at Different Development Stages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1