Jun Wang, Guojin Lin, Ning Tian, Kun Feng, Guowne Xu, Xiong-yu Hu, Zi-quan Chen, Chuan He
{"title":"干密实砂中 EPB 盾构隧道的面层破坏:模型试验和 DEM 研究","authors":"Jun Wang, Guojin Lin, Ning Tian, Kun Feng, Guowne Xu, Xiong-yu Hu, Zi-quan Chen, Chuan He","doi":"10.1139/cgj-2023-0072","DOIUrl":null,"url":null,"abstract":"This paper aims at addressing the face failure of earth pressure balance (EPB) shield tunnels in dry dense sand by model tests and discrete element method (DEM) models. The model tests incorporated a miniature EPB shield which could fully reproduce the real tunnel construction of excavation and support. DEM models simulating the model tests were developed to capture the underlying face failure mechanism. Results show that both the limit support pressure obtained at chamber board and tunnel face increase with increasing C/D (C is tunnel buried depth, D is tunnel diameter). The ratio of the former to the latter approximates 0.60 due to the soil retaining of cutterhead panel, and it is independent of C/D. The local face failure initializes around tunnel face and develops directly to the global failure outcropping the ground surface in one phase with C/D≤1.0, while the local failure develops to the global failure in three phases with C/D=2.0 due to the soil arching evolution. The soil arching gets weaker when it propagates upward, and the horizontal stress concentration in the longitudinal direction is stronger than the transverse direction due to the difference of arch foot.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"44 16","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face failure of EPB shield tunnels in dry dense sand: a model test and DEM study\",\"authors\":\"Jun Wang, Guojin Lin, Ning Tian, Kun Feng, Guowne Xu, Xiong-yu Hu, Zi-quan Chen, Chuan He\",\"doi\":\"10.1139/cgj-2023-0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at addressing the face failure of earth pressure balance (EPB) shield tunnels in dry dense sand by model tests and discrete element method (DEM) models. The model tests incorporated a miniature EPB shield which could fully reproduce the real tunnel construction of excavation and support. DEM models simulating the model tests were developed to capture the underlying face failure mechanism. Results show that both the limit support pressure obtained at chamber board and tunnel face increase with increasing C/D (C is tunnel buried depth, D is tunnel diameter). The ratio of the former to the latter approximates 0.60 due to the soil retaining of cutterhead panel, and it is independent of C/D. The local face failure initializes around tunnel face and develops directly to the global failure outcropping the ground surface in one phase with C/D≤1.0, while the local failure develops to the global failure in three phases with C/D=2.0 due to the soil arching evolution. The soil arching gets weaker when it propagates upward, and the horizontal stress concentration in the longitudinal direction is stronger than the transverse direction due to the difference of arch foot.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"44 16\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0072\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0072","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Face failure of EPB shield tunnels in dry dense sand: a model test and DEM study
This paper aims at addressing the face failure of earth pressure balance (EPB) shield tunnels in dry dense sand by model tests and discrete element method (DEM) models. The model tests incorporated a miniature EPB shield which could fully reproduce the real tunnel construction of excavation and support. DEM models simulating the model tests were developed to capture the underlying face failure mechanism. Results show that both the limit support pressure obtained at chamber board and tunnel face increase with increasing C/D (C is tunnel buried depth, D is tunnel diameter). The ratio of the former to the latter approximates 0.60 due to the soil retaining of cutterhead panel, and it is independent of C/D. The local face failure initializes around tunnel face and develops directly to the global failure outcropping the ground surface in one phase with C/D≤1.0, while the local failure develops to the global failure in three phases with C/D=2.0 due to the soil arching evolution. The soil arching gets weaker when it propagates upward, and the horizontal stress concentration in the longitudinal direction is stronger than the transverse direction due to the difference of arch foot.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.