Leonardo Pavanatto, Shakiba Davari, Carmen Badea, Richard Stoakley, Doug A. Bowman
{"title":"虚拟显示器与实体显示器:生产力工作的经验比较","authors":"Leonardo Pavanatto, Shakiba Davari, Carmen Badea, Richard Stoakley, Doug A. Bowman","doi":"10.3389/frvir.2023.1215820","DOIUrl":null,"url":null,"abstract":"Virtual monitors can display information through a head-worn display when a physical monitor is unavailable or provides insufficient space. Low resolution and restricted field of view are common issues of these displays. Such issues reduce readability and peripheral vision, leading to increased head movement when we increase the display size. This work evaluates the performance and user experience of a virtual monitor setup that combines software designed to minimize graphical transformations and a high-resolution virtual reality head-worn display. Participants performed productivity work across three approaches: Workstation, which is often used at office locations and consists of three side-by-side physical monitors; Laptop, which is often used in mobile locations and consists of a single physical monitor expanded with multiple desktops; and Virtual, our prototype with three side-by-side virtual monitors. Results show that participants deemed Virtual faster, easier to use, and more intuitive than Laptop, evidencing the advantages of head and eye glances over full content switches. They also confirm the existence of a gap between Workstation and Virtual, as Workstation achieved the highest user experience. We conclude with design guidelines obtained from the lessons learned in this study.","PeriodicalId":73116,"journal":{"name":"Frontiers in virtual reality","volume":"125 14","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual monitors vs. physical monitors: an empirical comparison for productivity work\",\"authors\":\"Leonardo Pavanatto, Shakiba Davari, Carmen Badea, Richard Stoakley, Doug A. Bowman\",\"doi\":\"10.3389/frvir.2023.1215820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual monitors can display information through a head-worn display when a physical monitor is unavailable or provides insufficient space. Low resolution and restricted field of view are common issues of these displays. Such issues reduce readability and peripheral vision, leading to increased head movement when we increase the display size. This work evaluates the performance and user experience of a virtual monitor setup that combines software designed to minimize graphical transformations and a high-resolution virtual reality head-worn display. Participants performed productivity work across three approaches: Workstation, which is often used at office locations and consists of three side-by-side physical monitors; Laptop, which is often used in mobile locations and consists of a single physical monitor expanded with multiple desktops; and Virtual, our prototype with three side-by-side virtual monitors. Results show that participants deemed Virtual faster, easier to use, and more intuitive than Laptop, evidencing the advantages of head and eye glances over full content switches. They also confirm the existence of a gap between Workstation and Virtual, as Workstation achieved the highest user experience. We conclude with design guidelines obtained from the lessons learned in this study.\",\"PeriodicalId\":73116,\"journal\":{\"name\":\"Frontiers in virtual reality\",\"volume\":\"125 14\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in virtual reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frvir.2023.1215820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in virtual reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frvir.2023.1215820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Virtual monitors vs. physical monitors: an empirical comparison for productivity work
Virtual monitors can display information through a head-worn display when a physical monitor is unavailable or provides insufficient space. Low resolution and restricted field of view are common issues of these displays. Such issues reduce readability and peripheral vision, leading to increased head movement when we increase the display size. This work evaluates the performance and user experience of a virtual monitor setup that combines software designed to minimize graphical transformations and a high-resolution virtual reality head-worn display. Participants performed productivity work across three approaches: Workstation, which is often used at office locations and consists of three side-by-side physical monitors; Laptop, which is often used in mobile locations and consists of a single physical monitor expanded with multiple desktops; and Virtual, our prototype with three side-by-side virtual monitors. Results show that participants deemed Virtual faster, easier to use, and more intuitive than Laptop, evidencing the advantages of head and eye glances over full content switches. They also confirm the existence of a gap between Workstation and Virtual, as Workstation achieved the highest user experience. We conclude with design guidelines obtained from the lessons learned in this study.