从复合材料的有效特性中提取纤维特性的单元格逆向应用

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2023-12-05 DOI:10.1177/10812865231212150
Zhenmin Zou, Shuguang Li
{"title":"从复合材料的有效特性中提取纤维特性的单元格逆向应用","authors":"Zhenmin Zou, Shuguang Li","doi":"10.1177/10812865231212150","DOIUrl":null,"url":null,"abstract":"A semi-analytical solution is obtained in this paper for the micromechanical analysis of the square and hexagonal unit cells using complex potentials. It provides a means of numerical characterisation of unidirectionally fibre-reinforced composites for their effective properties. This process is considered as the forward problem and its inverse counterpart is also established in this paper to extract fibre properties from effective properties of composites. It is formulated into a mathematical optimisation problem in which the difference between predicted and provided effective properties is employed as the objective function with the fibre properties as the optimisation variables. The attempt of such an inverse problem is to address the lack of fibre properties for many types of composites commonly in use. The novelty of the paper lies in both sides of the analyses, forward and inverse, as none is available in the literature in the forms as presented in this paper and, more importantly, in the objective of this paper as an attempt to address the pressing and yet long-standing issue of lack of fibre properties. As a verification of the forward analysis, the predicted effective properties of a composite match perfectly with the finite element method (FEM) results. The same case is also employed to verify the inverse analysis by turning the prediction the other way round. Both the forward and inverse analyses have been validated against a series of experimental data. While the forward analysis is generally applicable to any input data as the properties of the constituents, the inverse analysis is sensitive to the input data. Potentially, the inverse analysis would offer a much-needed and also effective tool for the characterisation of fibres. However, reasonable predictions of fibre properties can only be obtained if input data are reasonably consistent.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"120 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An inverse application of unit cells for extracting fibre properties from effective properties of composites\",\"authors\":\"Zhenmin Zou, Shuguang Li\",\"doi\":\"10.1177/10812865231212150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A semi-analytical solution is obtained in this paper for the micromechanical analysis of the square and hexagonal unit cells using complex potentials. It provides a means of numerical characterisation of unidirectionally fibre-reinforced composites for their effective properties. This process is considered as the forward problem and its inverse counterpart is also established in this paper to extract fibre properties from effective properties of composites. It is formulated into a mathematical optimisation problem in which the difference between predicted and provided effective properties is employed as the objective function with the fibre properties as the optimisation variables. The attempt of such an inverse problem is to address the lack of fibre properties for many types of composites commonly in use. The novelty of the paper lies in both sides of the analyses, forward and inverse, as none is available in the literature in the forms as presented in this paper and, more importantly, in the objective of this paper as an attempt to address the pressing and yet long-standing issue of lack of fibre properties. As a verification of the forward analysis, the predicted effective properties of a composite match perfectly with the finite element method (FEM) results. The same case is also employed to verify the inverse analysis by turning the prediction the other way round. Both the forward and inverse analyses have been validated against a series of experimental data. While the forward analysis is generally applicable to any input data as the properties of the constituents, the inverse analysis is sensitive to the input data. Potentially, the inverse analysis would offer a much-needed and also effective tool for the characterisation of fibres. However, reasonable predictions of fibre properties can only be obtained if input data are reasonably consistent.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"120 8\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231212150\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231212150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了用复电位对方形和六边形单元胞进行微力学分析的半解析解。它为单向纤维增强复合材料的有效性能提供了一种数值表征手段。本文将这一过程视为正问题,建立了从复合材料的有效性能中提取纤维性能的逆问题。它被表述为一个数学优化问题,其中以纤维性能作为优化变量,以预测和提供的有效性能之间的差异作为目标函数。这种反问题的尝试是为了解决通常使用的许多类型的复合材料缺乏纤维特性的问题。本文的新颖性在于分析的正反两面,因为在本文中提出的形式的文献中没有可用的,更重要的是,本文的目的是试图解决紧迫而长期存在的缺乏纤维性能的问题。作为正演分析的验证,所预测的复合材料有效性能与有限元计算结果吻合较好。同样的情况也被用来验证反向分析,将预测反过来。正、逆分析均通过一系列实验数据进行了验证。正演分析一般适用于任何输入数据作为成分的性质,而逆分析对输入数据很敏感。潜在地,逆分析将为纤维的特征提供急需的有效工具。然而,只有在输入数据相当一致的情况下,才能获得对纤维性能的合理预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An inverse application of unit cells for extracting fibre properties from effective properties of composites
A semi-analytical solution is obtained in this paper for the micromechanical analysis of the square and hexagonal unit cells using complex potentials. It provides a means of numerical characterisation of unidirectionally fibre-reinforced composites for their effective properties. This process is considered as the forward problem and its inverse counterpart is also established in this paper to extract fibre properties from effective properties of composites. It is formulated into a mathematical optimisation problem in which the difference between predicted and provided effective properties is employed as the objective function with the fibre properties as the optimisation variables. The attempt of such an inverse problem is to address the lack of fibre properties for many types of composites commonly in use. The novelty of the paper lies in both sides of the analyses, forward and inverse, as none is available in the literature in the forms as presented in this paper and, more importantly, in the objective of this paper as an attempt to address the pressing and yet long-standing issue of lack of fibre properties. As a verification of the forward analysis, the predicted effective properties of a composite match perfectly with the finite element method (FEM) results. The same case is also employed to verify the inverse analysis by turning the prediction the other way round. Both the forward and inverse analyses have been validated against a series of experimental data. While the forward analysis is generally applicable to any input data as the properties of the constituents, the inverse analysis is sensitive to the input data. Potentially, the inverse analysis would offer a much-needed and also effective tool for the characterisation of fibres. However, reasonable predictions of fibre properties can only be obtained if input data are reasonably consistent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1