利用紫外线和二氧化硅表面修饰的二氧化钛光催化剂在水中高产率、高选择性地生产 CH4 和 H2

Oswaldo Núñez, M. Fereidooni, V. Márquez, Duangthip Sattayamuk, P. Praserthdam, S. Praserthdam
{"title":"利用紫外线和二氧化硅表面修饰的二氧化钛光催化剂在水中高产率、高选择性地生产 CH4 和 H2","authors":"Oswaldo Núñez, M. Fereidooni, V. Márquez, Duangthip Sattayamuk, P. Praserthdam, S. Praserthdam","doi":"10.21926/cr.2304029","DOIUrl":null,"url":null,"abstract":"To improve CH<sub>4</sub> and H<sub>2</sub> formation from CO<sub>2</sub> photoreduction using non-organic, non-laborious, and inexpensive photocatalysts, we have prepared two surface-silicate-modified TiO<sub>2</sub> catalysts: P25-SiO<sub>2</sub> and AmTiO<sub>2</sub>-SiO<sub>2</sub> (amorphous TiO<sub>2</sub>) to be tested in water and using UV light. The last catalyst produces more CH<sub>4</sub> and H<sub>2</sub> in water than P25 (3:1 TiO<sub>2</sub> anatase: rutile) under UV light irradiation of HCO<sub>3</sub><sup>-</sup> and CO<sub>2</sub>; am-TiO<sub>2</sub>-SiO<sub>2</sub> at pH = 7, produces 8 times more CH<sub>4</sub> and H<sub>2</sub> than P25 with selectivity at the reactor headspace of 30% and 53%, respectively. Using CO<sub>2</sub> (pH = 3), 80 times more CH<sub>4</sub> than P25 under the same conditions is obtained with a yield of 71%. This corresponds to a production of 8.9 μmol g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, one of the highest reported rates of CH<sub>4</sub> production from CO<sub>2</sub> using carbon-free semiconductors. H<sub>2</sub> is also produced by water splitting using Am-TiO<sub>2</sub>-SiO<sub>2</sub> and water at low pH. The enhanced reactivity compared to P25 is attributed to three main factors: a) Low catalyst PZC (4.1) that facilitates CO<sub>2</sub> adsorption and proton availability at the active site to catalyze the e transfer from Ti at the TiO<sub>2</sub>-SiO<sub>2</sub>-carbonate adduct b) SiO<sub>2</sub> acts as electron trap reducing carriers recombination (External intramolecular trapping (EIT) mechanism) and c) am-TiO<sub>2</sub>-SiO<sub>2</sub>, light collection efficiency, surface area and irregular atoms distribution. Catalysts were also tested for Methylene blue (MB) photooxidation. P25 is quite a better catalyst in oxidizing MB via OH radicals, probably due to the more positive valence band potentials in the SiO<sub>2</sub>-modified catalysts that avoid the OH radical formation from water; however, when bicarbonate is added to MB solution, am-TiO<sub>2</sub>-SiO<sub>2</sub> catalysts reactivity increases as a consequence of its valence band down-bending.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"52 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Water High Yield and Selectivity of CH4 and H2 Production Using UVC Light and a SiO2-surface-modified TiO2 Photocatalysts\",\"authors\":\"Oswaldo Núñez, M. Fereidooni, V. Márquez, Duangthip Sattayamuk, P. Praserthdam, S. Praserthdam\",\"doi\":\"10.21926/cr.2304029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve CH<sub>4</sub> and H<sub>2</sub> formation from CO<sub>2</sub> photoreduction using non-organic, non-laborious, and inexpensive photocatalysts, we have prepared two surface-silicate-modified TiO<sub>2</sub> catalysts: P25-SiO<sub>2</sub> and AmTiO<sub>2</sub>-SiO<sub>2</sub> (amorphous TiO<sub>2</sub>) to be tested in water and using UV light. The last catalyst produces more CH<sub>4</sub> and H<sub>2</sub> in water than P25 (3:1 TiO<sub>2</sub> anatase: rutile) under UV light irradiation of HCO<sub>3</sub><sup>-</sup> and CO<sub>2</sub>; am-TiO<sub>2</sub>-SiO<sub>2</sub> at pH = 7, produces 8 times more CH<sub>4</sub> and H<sub>2</sub> than P25 with selectivity at the reactor headspace of 30% and 53%, respectively. Using CO<sub>2</sub> (pH = 3), 80 times more CH<sub>4</sub> than P25 under the same conditions is obtained with a yield of 71%. This corresponds to a production of 8.9 μmol g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>, one of the highest reported rates of CH<sub>4</sub> production from CO<sub>2</sub> using carbon-free semiconductors. H<sub>2</sub> is also produced by water splitting using Am-TiO<sub>2</sub>-SiO<sub>2</sub> and water at low pH. The enhanced reactivity compared to P25 is attributed to three main factors: a) Low catalyst PZC (4.1) that facilitates CO<sub>2</sub> adsorption and proton availability at the active site to catalyze the e transfer from Ti at the TiO<sub>2</sub>-SiO<sub>2</sub>-carbonate adduct b) SiO<sub>2</sub> acts as electron trap reducing carriers recombination (External intramolecular trapping (EIT) mechanism) and c) am-TiO<sub>2</sub>-SiO<sub>2</sub>, light collection efficiency, surface area and irregular atoms distribution. Catalysts were also tested for Methylene blue (MB) photooxidation. P25 is quite a better catalyst in oxidizing MB via OH radicals, probably due to the more positive valence band potentials in the SiO<sub>2</sub>-modified catalysts that avoid the OH radical formation from water; however, when bicarbonate is added to MB solution, am-TiO<sub>2</sub>-SiO<sub>2</sub> catalysts reactivity increases as a consequence of its valence band down-bending.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"52 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2304029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2304029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高CO2光还原过程中CH4和H2的生成,我们制备了两种表面硅酸盐修饰的TiO2催化剂:P25-SiO2和AmTiO2-SiO2(无定形TiO2),并在水中和紫外线下进行了测试。最后一种催化剂在HCO3-和CO2的紫外光照射下,比P25 (TiO2锐钛矿:金红石3:1)在水中产生更多的CH4和H2;在pH = 7时,am-TiO2-SiO2的CH4和H2的选择性分别为30%和53%,是P25的8倍。在相同条件下,CO2 (pH = 3)的CH4产率为P25的80倍,产率为71%。这相当于8.9 μmol gcat-1·h-1的产量,这是使用无碳半导体从CO2中产生CH4的最高速率之一。在低ph条件下,采用Am-TiO2-SiO2与水进行水裂解也能生成H2。与P25相比,反应性的增强主要归因于三个因素:a)低催化剂PZC(4.1),有利于CO2吸附和活性位点的质子可用性,催化Ti在tio2 -SiO2-碳化物加合物处的e转移;b) SiO2作为电子陷阱,减少载流子重组(外部分子内捕获(EIT)机制);c) am-TiO2-SiO2,光收集效率,表面积和不规则原子分布。对催化剂进行了亚甲基蓝(MB)光氧化实验。P25在通过OH自由基氧化MB方面是一个相当好的催化剂,这可能是由于sio2修饰的催化剂具有更多的正价带势,避免了OH自由基在水中的形成;然而,当碳酸氢盐加入到MB溶液中时,am-TiO2-SiO2催化剂的反应活性因其价带向下弯曲而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Water High Yield and Selectivity of CH4 and H2 Production Using UVC Light and a SiO2-surface-modified TiO2 Photocatalysts
To improve CH4 and H2 formation from CO2 photoreduction using non-organic, non-laborious, and inexpensive photocatalysts, we have prepared two surface-silicate-modified TiO2 catalysts: P25-SiO2 and AmTiO2-SiO2 (amorphous TiO2) to be tested in water and using UV light. The last catalyst produces more CH4 and H2 in water than P25 (3:1 TiO2 anatase: rutile) under UV light irradiation of HCO3- and CO2; am-TiO2-SiO2 at pH = 7, produces 8 times more CH4 and H2 than P25 with selectivity at the reactor headspace of 30% and 53%, respectively. Using CO2 (pH = 3), 80 times more CH4 than P25 under the same conditions is obtained with a yield of 71%. This corresponds to a production of 8.9 μmol gcat-1·h-1, one of the highest reported rates of CH4 production from CO2 using carbon-free semiconductors. H2 is also produced by water splitting using Am-TiO2-SiO2 and water at low pH. The enhanced reactivity compared to P25 is attributed to three main factors: a) Low catalyst PZC (4.1) that facilitates CO2 adsorption and proton availability at the active site to catalyze the e transfer from Ti at the TiO2-SiO2-carbonate adduct b) SiO2 acts as electron trap reducing carriers recombination (External intramolecular trapping (EIT) mechanism) and c) am-TiO2-SiO2, light collection efficiency, surface area and irregular atoms distribution. Catalysts were also tested for Methylene blue (MB) photooxidation. P25 is quite a better catalyst in oxidizing MB via OH radicals, probably due to the more positive valence band potentials in the SiO2-modified catalysts that avoid the OH radical formation from water; however, when bicarbonate is added to MB solution, am-TiO2-SiO2 catalysts reactivity increases as a consequence of its valence band down-bending.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Photogeneration of Singlet Oxygen and High Photocatalytic and Antibacterial Activities of Porous Mn-Doped ZnO-ZrO2 Nanocomposites Determination of Reflectance Spectra and Colorimetry of Titanium and Tungsten Oxides Obtained by Microwave-assisted Hydrothermal Synthesis A Remarkable Pt Doped CNT Catalyst as a Double Functional Material: Its Application for Hydrogen Production and Supercapacitor NaY Zeolite Synthesis from Vermiculite and Modification with Surfactant Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1