Nadha Gowrish Narisetty, Gaurav Tripathi, S. Kanga, S. Singh, Gowhar Meraj, Pankaj Kumar, B. Đurin, Hrvoje Matijević
{"title":"评估拉贾斯坦邦半干旱地区地下水脆弱性的综合多模型方法:纳入 DRASTIC 和 SINTACS 变体","authors":"Nadha Gowrish Narisetty, Gaurav Tripathi, S. Kanga, S. Singh, Gowhar Meraj, Pankaj Kumar, B. Đurin, Hrvoje Matijević","doi":"10.3390/hydrology10120231","DOIUrl":null,"url":null,"abstract":"Groundwater pollution in Rajasthan, India, poses significant challenges due to the region’s heavy reliance on this resource for drinking and irrigation. Given the increasing water scarcity and overexploitation, this study assesses the susceptibility of groundwater pollution in this semi-arid area. We applied and compared vulnerability mapping methods, DRASTIC and SINTACS, and their modified versions. These methodologies considered various geological and environmental factors such as depth-to-water table, recharge, aquifer conductivity, soil, and topography. The modified versions also integrated land use and temperature data for enhanced sensitivity. Validation was achieved by comparing contaminant data from the Central Ground Water Board (CGWB), India, focusing on primary contaminants such as fluoride, nitrate, chloride, and total dissolved solids (TDS). The results strongly align with the modified methodologies and observed groundwater ion values. Specifically, more than half of the 300 sample points analyzed indicated TDS values exceeding the permissible 300 ppm limit, with over 80 points surpassing 500 ppm. The vulnerability was classified into the following five categories: very low; low; medium; high; and very high. Notably, 30.53% of the area displayed “very high” vulnerability under the modified DRASTIC model. Districts like Jalore, Pali, Sirohi, and Jodhpur emerged as highly vulnerable zones, while areas within Udaipur, Kota, and Jaipur, among others, showed very high vulnerability. This research highlights the importance of conducting groundwater vulnerability assessments, especially for regions grappling with water scarcity like Rajasthan. The findings from this research are pivotal in guiding sustainable ground water resource management, as well as advocating continual monitoring and effective groundwater conservation strategies in the region.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants\",\"authors\":\"Nadha Gowrish Narisetty, Gaurav Tripathi, S. Kanga, S. Singh, Gowhar Meraj, Pankaj Kumar, B. Đurin, Hrvoje Matijević\",\"doi\":\"10.3390/hydrology10120231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Groundwater pollution in Rajasthan, India, poses significant challenges due to the region’s heavy reliance on this resource for drinking and irrigation. Given the increasing water scarcity and overexploitation, this study assesses the susceptibility of groundwater pollution in this semi-arid area. We applied and compared vulnerability mapping methods, DRASTIC and SINTACS, and their modified versions. These methodologies considered various geological and environmental factors such as depth-to-water table, recharge, aquifer conductivity, soil, and topography. The modified versions also integrated land use and temperature data for enhanced sensitivity. Validation was achieved by comparing contaminant data from the Central Ground Water Board (CGWB), India, focusing on primary contaminants such as fluoride, nitrate, chloride, and total dissolved solids (TDS). The results strongly align with the modified methodologies and observed groundwater ion values. Specifically, more than half of the 300 sample points analyzed indicated TDS values exceeding the permissible 300 ppm limit, with over 80 points surpassing 500 ppm. The vulnerability was classified into the following five categories: very low; low; medium; high; and very high. Notably, 30.53% of the area displayed “very high” vulnerability under the modified DRASTIC model. Districts like Jalore, Pali, Sirohi, and Jodhpur emerged as highly vulnerable zones, while areas within Udaipur, Kota, and Jaipur, among others, showed very high vulnerability. This research highlights the importance of conducting groundwater vulnerability assessments, especially for regions grappling with water scarcity like Rajasthan. The findings from this research are pivotal in guiding sustainable ground water resource management, as well as advocating continual monitoring and effective groundwater conservation strategies in the region.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10120231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10120231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants
Groundwater pollution in Rajasthan, India, poses significant challenges due to the region’s heavy reliance on this resource for drinking and irrigation. Given the increasing water scarcity and overexploitation, this study assesses the susceptibility of groundwater pollution in this semi-arid area. We applied and compared vulnerability mapping methods, DRASTIC and SINTACS, and their modified versions. These methodologies considered various geological and environmental factors such as depth-to-water table, recharge, aquifer conductivity, soil, and topography. The modified versions also integrated land use and temperature data for enhanced sensitivity. Validation was achieved by comparing contaminant data from the Central Ground Water Board (CGWB), India, focusing on primary contaminants such as fluoride, nitrate, chloride, and total dissolved solids (TDS). The results strongly align with the modified methodologies and observed groundwater ion values. Specifically, more than half of the 300 sample points analyzed indicated TDS values exceeding the permissible 300 ppm limit, with over 80 points surpassing 500 ppm. The vulnerability was classified into the following five categories: very low; low; medium; high; and very high. Notably, 30.53% of the area displayed “very high” vulnerability under the modified DRASTIC model. Districts like Jalore, Pali, Sirohi, and Jodhpur emerged as highly vulnerable zones, while areas within Udaipur, Kota, and Jaipur, among others, showed very high vulnerability. This research highlights the importance of conducting groundwater vulnerability assessments, especially for regions grappling with water scarcity like Rajasthan. The findings from this research are pivotal in guiding sustainable ground water resource management, as well as advocating continual monitoring and effective groundwater conservation strategies in the region.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.