BPMF:用于地震自动探测和定位的反向投影和匹配过滤工作流程

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Seismological Research Letters Pub Date : 2023-12-04 DOI:10.1785/0220230230
É. Beaucé, W. Frank, L. Seydoux, Piero Poli, Nathan Groebner, R. D. van der Hilst, Michel Campillo
{"title":"BPMF:用于地震自动探测和定位的反向投影和匹配过滤工作流程","authors":"É. Beaucé, W. Frank, L. Seydoux, Piero Poli, Nathan Groebner, R. D. van der Hilst, Michel Campillo","doi":"10.1785/0220230230","DOIUrl":null,"url":null,"abstract":"\n We introduce BPMF (backprojection and matched filtering)—a complete and fully automated workflow designed for earthquake detection and location, and distributed in a Python package. This workflow enables the creation of comprehensive earthquake catalogs with low magnitudes of completeness using no or little prior knowledge of the study region. BPMF uses the seismic wavefield backprojection method to construct an initial earthquake catalog that is then densified with matched filtering. BPMF integrates recent machine learning tools to complement physics-based techniques, and improve the detection and location of earthquakes. In particular, BPMF offers a flexible framework in which machine learning detectors and backprojection can be harmoniously combined, effectively transforming single-station detectors into multistation detectors. The modularity of BPMF grants users the ability to control the contribution of machine learning tools within the workflow. The computation-intensive tasks (backprojection and matched filtering) are executed with C and CUDA-C routines wrapped in Python code. This leveraging of low-level, fast programming languages and graphic processing unit acceleration enables BPMF to efficiently handle large datasets. Here, we first summarize the methodology and describe the application programming interface. We then illustrate BPMF’s capabilities to characterize microseismicity with a 10 yr long application in the Ridgecrest, California area. Finally, we discuss the workflow’s runtime scaling with numerical resources and its versatility across various tectonic environments and different problems.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"40 14","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BPMF: A Backprojection and Matched-Filtering Workflow for Automated Earthquake Detection and Location\",\"authors\":\"É. Beaucé, W. Frank, L. Seydoux, Piero Poli, Nathan Groebner, R. D. van der Hilst, Michel Campillo\",\"doi\":\"10.1785/0220230230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We introduce BPMF (backprojection and matched filtering)—a complete and fully automated workflow designed for earthquake detection and location, and distributed in a Python package. This workflow enables the creation of comprehensive earthquake catalogs with low magnitudes of completeness using no or little prior knowledge of the study region. BPMF uses the seismic wavefield backprojection method to construct an initial earthquake catalog that is then densified with matched filtering. BPMF integrates recent machine learning tools to complement physics-based techniques, and improve the detection and location of earthquakes. In particular, BPMF offers a flexible framework in which machine learning detectors and backprojection can be harmoniously combined, effectively transforming single-station detectors into multistation detectors. The modularity of BPMF grants users the ability to control the contribution of machine learning tools within the workflow. The computation-intensive tasks (backprojection and matched filtering) are executed with C and CUDA-C routines wrapped in Python code. This leveraging of low-level, fast programming languages and graphic processing unit acceleration enables BPMF to efficiently handle large datasets. Here, we first summarize the methodology and describe the application programming interface. We then illustrate BPMF’s capabilities to characterize microseismicity with a 10 yr long application in the Ridgecrest, California area. Finally, we discuss the workflow’s runtime scaling with numerical resources and its versatility across various tectonic environments and different problems.\",\"PeriodicalId\":21687,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\"40 14\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230230\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0220230230","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了BPMF(反向投影和匹配过滤)——一个为地震检测和定位设计的完整且完全自动化的工作流,并以Python包的形式发布。该工作流程可以创建完整的低震级地震目录,而无需或很少使用对研究区域的先验知识。BPMF使用地震波场反投影方法构造初始地震目录,然后通过匹配滤波进行密集化。BPMF集成了最新的机器学习工具,以补充基于物理的技术,并改进地震的检测和定位。特别是,BPMF提供了一个灵活的框架,在这个框架中,机器学习检测器和反向投影可以和谐地结合在一起,有效地将单站检测器转换为多站检测器。BPMF的模块化使用户能够控制工作流中机器学习工具的贡献。计算密集型任务(反向投影和匹配过滤)是用Python代码包装的C和CUDA-C例程执行的。利用低级、快速的编程语言和图形处理单元加速使BPMF能够有效地处理大型数据集。在这里,我们首先总结了方法并描述了应用程序编程接口。然后,我们通过在加州里奇克莱斯特地区长达10年的应用,说明了BPMF表征微震活动的能力。最后,我们讨论了工作流在数值资源下的运行时缩放及其在不同构造环境和不同问题上的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BPMF: A Backprojection and Matched-Filtering Workflow for Automated Earthquake Detection and Location
We introduce BPMF (backprojection and matched filtering)—a complete and fully automated workflow designed for earthquake detection and location, and distributed in a Python package. This workflow enables the creation of comprehensive earthquake catalogs with low magnitudes of completeness using no or little prior knowledge of the study region. BPMF uses the seismic wavefield backprojection method to construct an initial earthquake catalog that is then densified with matched filtering. BPMF integrates recent machine learning tools to complement physics-based techniques, and improve the detection and location of earthquakes. In particular, BPMF offers a flexible framework in which machine learning detectors and backprojection can be harmoniously combined, effectively transforming single-station detectors into multistation detectors. The modularity of BPMF grants users the ability to control the contribution of machine learning tools within the workflow. The computation-intensive tasks (backprojection and matched filtering) are executed with C and CUDA-C routines wrapped in Python code. This leveraging of low-level, fast programming languages and graphic processing unit acceleration enables BPMF to efficiently handle large datasets. Here, we first summarize the methodology and describe the application programming interface. We then illustrate BPMF’s capabilities to characterize microseismicity with a 10 yr long application in the Ridgecrest, California area. Finally, we discuss the workflow’s runtime scaling with numerical resources and its versatility across various tectonic environments and different problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seismological Research Letters
Seismological Research Letters 地学-地球化学与地球物理
CiteScore
6.60
自引率
12.10%
发文量
239
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Follow the Trace: Becoming a Seismo‐Detective with a Campus‐Based Raspberry Shake Seismometer Nominations for the Next Joyner Lecturer Due 30 June Imaging Urban Hidden Faults with Ambient Noise Recorded by Dense Seismic Arrays Microseismic Event Location with Dual Vertical DAS Arrays: Insights from the FORGE 2022 Stimulation New Empirical Source‐Scaling Laws for Crustal Earthquakes Incorporating Fault Dip and Seismogenic‐Thickness Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1