Xin Guo, Ping Yang, Jiayin Zhang, Junqiang Ren, Xuefeng Lu
{"title":"通过第一性原理探索 fcc-Fe/TiC 界面合金元素的偏析行为","authors":"Xin Guo, Ping Yang, Jiayin Zhang, Junqiang Ren, Xuefeng Lu","doi":"10.1142/s0217984924501367","DOIUrl":null,"url":null,"abstract":"In this paper, the effects of rare earth elements on the bonding strength and stability of TiC/fcc-Fe interface are explored by using the first-principles method based on density functional theory. The results show that the Ti terminal is more stable than the C terminal in the process of forming the interface. The alloying elements tend to segregate at position 2 on the side of fcc-Fe. The segregation of Mo, Nb, Cr and Ce alloying elements increases the interatomic electron cloud enrichment and consumption between the interfaces and enhances the Fe–Ti interactions. The d orbitals of Mo, Nb, Cr and Ce and f orbitals of Ce have strong hybridization with Fe-d orbitals and Ti-d orbitals electrons near the Fermi energy level, indicating an increase in bonding strength and stability of the interfaces. When Fe atoms are replaced by W, Ni and Al atoms, the covalent bond strength between interfacial atoms is reduced, thus weakening the interfacial bonding strength. This provides solid theoretical foundation with regard to further application in austenitic heat-resistant steel fields.","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"77 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segregation behavior of alloying elements at the fcc-Fe/TiC interface by first principles exploration\",\"authors\":\"Xin Guo, Ping Yang, Jiayin Zhang, Junqiang Ren, Xuefeng Lu\",\"doi\":\"10.1142/s0217984924501367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effects of rare earth elements on the bonding strength and stability of TiC/fcc-Fe interface are explored by using the first-principles method based on density functional theory. The results show that the Ti terminal is more stable than the C terminal in the process of forming the interface. The alloying elements tend to segregate at position 2 on the side of fcc-Fe. The segregation of Mo, Nb, Cr and Ce alloying elements increases the interatomic electron cloud enrichment and consumption between the interfaces and enhances the Fe–Ti interactions. The d orbitals of Mo, Nb, Cr and Ce and f orbitals of Ce have strong hybridization with Fe-d orbitals and Ti-d orbitals electrons near the Fermi energy level, indicating an increase in bonding strength and stability of the interfaces. When Fe atoms are replaced by W, Ni and Al atoms, the covalent bond strength between interfacial atoms is reduced, thus weakening the interfacial bonding strength. This provides solid theoretical foundation with regard to further application in austenitic heat-resistant steel fields.\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"77 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924501367\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924501367","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Segregation behavior of alloying elements at the fcc-Fe/TiC interface by first principles exploration
In this paper, the effects of rare earth elements on the bonding strength and stability of TiC/fcc-Fe interface are explored by using the first-principles method based on density functional theory. The results show that the Ti terminal is more stable than the C terminal in the process of forming the interface. The alloying elements tend to segregate at position 2 on the side of fcc-Fe. The segregation of Mo, Nb, Cr and Ce alloying elements increases the interatomic electron cloud enrichment and consumption between the interfaces and enhances the Fe–Ti interactions. The d orbitals of Mo, Nb, Cr and Ce and f orbitals of Ce have strong hybridization with Fe-d orbitals and Ti-d orbitals electrons near the Fermi energy level, indicating an increase in bonding strength and stability of the interfaces. When Fe atoms are replaced by W, Ni and Al atoms, the covalent bond strength between interfacial atoms is reduced, thus weakening the interfacial bonding strength. This provides solid theoretical foundation with regard to further application in austenitic heat-resistant steel fields.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.